MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

The Impact of Weld Metal Creep Strength on the Overall Creep Strength of 9% Cr Steel Weldments

Author(s)
Mayr, Peter; Mitsche, Stefan; Cerjak, Horst; Allen, Samuel Miller
Thumbnail
Downloadoriginal manuscript (12.03Mb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike 3.0 http://creativecommons.org/licenses/by-nc-sa/3.0/
Metadata
Show full item record
Abstract
In this work, three joints of a X11CrMoWVNb9-1-1 (P911) pipe were welded with three filler metals by conventional arc welding. The filler metals varied in creep strength level, so that one overmatched, one undermatched, and one matched the creep strength of the P911 grade pipe base material. The long-term objective of this work was to study the influence of weld metal creep strength on the overall creep behavior of the welded joints and their failure mechanism. Uniaxial creep tests at 600°C and stresses ranging from 70 MPa to 150 MPa were performed on the cross-weld samples of all three welds. A total creep testing time of more than 470,000 h was accumulated. The longest running sample achieved a time-to-rupture of more than 45,000 h. Creep testing revealed that the use of undermatching weld metal led to a premature fracture in the weld metal at higher stress levels. Compared with undermatching weld metal, the use of matching and overmatching filler materials increased the time-to-rupture at high stress levels by 75% and 33% at lowest stress levels. At typical component stresses below 100 MPa, all samples failed in the grain-refined heat-affected zone by characteristic type IV failure. For investigations of the failure modes, cross sections of fractured samples were investigated by optical light microscopy, scanning electron microscopy, and electron backscatter diffraction. The mechanism of weld metal creep failures and type IV creep failures is discussed in detail.
Date issued
2011-03
URI
http://hdl.handle.net/1721.1/81954
Department
Massachusetts Institute of Technology. Department of Materials Science and Engineering
Journal
Journal of Engineering Materials and Technology
Publisher
ASME International
Citation
Mayr, Peter, Stefan Mitsche, Horst Cerjak, and Samuel M. Allen. “The Impact of Weld Metal Creep Strength on the Overall Creep Strength of 9% Cr Steel Weldments.” Journal of Engineering Materials and Technology 133, no. 2 (2011): 021011.
Version: Author's final manuscript
ISSN
00944289

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.