Show simple item record

dc.contributor.authorYe, Jun
dc.contributor.authorSun, Kewei
dc.contributor.authorZhao, Yang
dc.contributor.authorYu, Yunjin
dc.contributor.authorKong Lee, Chee
dc.contributor.authorCao, Jianshu
dc.date.accessioned2013-11-04T17:39:28Z
dc.date.available2013-11-04T17:39:28Z
dc.date.issued2012-06
dc.date.submitted2012-03
dc.identifier.issn00219606
dc.identifier.issn1089-7690
dc.identifier.urihttp://hdl.handle.net/1721.1/81978
dc.description.abstractTwo distinct approaches, the Frenkel-Dirac time-dependent variation and the Haken-Strobl model, are adopted to study energy transfer dynamics in single-ring and double-ring light-harvesting (LH) systems in purple bacteria. It is found that the inclusion of long-range dipolar interactions in the two methods results in significant increase in intra- or inter-ring exciton transfer efficiency. The dependence of exciton transfer efficiency on trapping positions on single rings of LH2 (B850) and LH1 is similar to that in toy models with nearest-neighbor coupling only. However, owing to the symmetry breaking caused by the dimerization of BChls and dipolar couplings, such dependence has been largely suppressed. In the studies of coupled-ring systems, both methods reveal an interesting role of dipolar interactions in increasing energy transfer efficiency by introducing multiple intra/inter-ring transfer paths. Importantly, the time scale (4  ps) of inter-ring exciton transfer obtained from polaron dynamics is in good agreement with previous studies. In a double-ring LH2 system, non-nearest neighbor interactions can induce symmetry breaking, which leads to global and local minima of the average trapping time in the presence of a non-zero dephasing rate, suggesting that environment dephasing helps preserve quantum coherent energy transfer when the perfect circular symmetry in the hypothetic system is broken. This study reveals that dipolar coupling between chromophores may play an important role in the high energy transfer efficiency in the LH systems of purple bacteria and many other natural photosynthetic systems.en_US
dc.language.isoen_US
dc.publisherAmerican Institute of Physics (AIP)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1063/1.4729786en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceMIT web domainen_US
dc.titleExcitonic energy transfer in light-harvesting complexes in purple bacteriaen_US
dc.typeArticleen_US
dc.identifier.citationYe, Jun, Kewei Sun, Yang Zhao, Yunjin Yu, Chee Kong Lee, and Jianshu Cao. “Excitonic energy transfer in light-harvesting complexes in purple bacteria.” The Journal of Chemical Physics 136, no. 24 (2012): 245104. © 2012 American Institute of Physicsen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemistryen_US
dc.contributor.mitauthorCao, Jianshuen_US
dc.relation.journalThe Journal of Chemical Physicsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsYe, Jun; Sun, Kewei; Zhao, Yang; Yu, Yunjin; Kong Lee, Chee; Cao, Jianshuen_US
dc.identifier.orcidhttps://orcid.org/0000-0001-7616-7809
mit.licensePUBLISHER_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record