Higher-order kinetic expansion of quantum dissipative dynamics: Mapping quantum networks to kinetic networks
Author(s)
Wu, Jianlan; Cao, Jianshu
DownloadCao_Higher-order kinetic.pdf (1.149Mb)
PUBLISHER_POLICY
Publisher Policy
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Terms of use
Metadata
Show full item recordAbstract
We apply a new formalism to derive the higher-order quantum kinetic expansion (QKE) for studying dissipative dynamics in a general quantum network coupled with an arbitrary thermal bath. The dynamics of system population is described by a time-convoluted kinetic equation, where the time-nonlocal rate kernel is systematically expanded of the order of off-diagonal elements of the system Hamiltonian. In the second order, the rate kernel recovers the expression of the noninteracting-blip approximation method. The higher-order corrections in the rate kernel account for the effects of the multi-site quantum coherence and the bath relaxation. In a quantum harmonic bath, the rate kernels of different orders are analytically derived. As demonstrated by four examples, the higher-order QKE can reliably predict quantum dissipative dynamics, comparing well with the hierarchic equation approach. More importantly, the higher-order rate kernels can distinguish and quantify distinct nontrivial quantum coherent effects, such as long-range energy transfer from quantum tunneling and quantum interference arising from the phase accumulation of interactions.
Date issued
2013-07Department
Massachusetts Institute of Technology. Department of ChemistryJournal
The Journal of Chemical Physics
Publisher
American Institute of Physics (AIP)
Citation
Wu, Jianlan, and Jianshu Cao. “Higher-order kinetic expansion of quantum dissipative dynamics: Mapping quantum networks to kinetic networks.” The Journal of Chemical Physics 139, no. 4 (2013): 044102. © 2013 AIP Publishing LLC
Version: Final published version
ISSN
00219606
1089-7690