Show simple item record

dc.contributor.authorGeramifard, Alborz
dc.contributor.authorRedding, Joshua D.
dc.contributor.authorJoseph, Joshua Mason
dc.date.accessioned2013-11-07T18:37:01Z
dc.date.available2013-11-07T18:37:01Z
dc.date.issued2012-06
dc.identifier.isbn978-1-4673-2102-0
dc.identifier.isbn978-1-4577-1095-7
dc.identifier.issn0743-1619
dc.identifier.urihttp://hdl.handle.net/1721.1/82023
dc.description.abstractRisk and reward are fundamental concepts in the cooperative control of unmanned systems. In this research, we focus on developing a constructive relationship between cooperative planning and learning algorithms to mitigate the learning risk, while boosting system (planner & learner) asymptotic performance and guaranteeing the safety of agent behavior. Our framework is an instance of the intelligent cooperative control architecture (iCCA) where the learner incrementally improves on the output of a baseline planner through interaction and constrained exploration. We extend previous work by extracting the embedded parameterized transition model from within the cooperative planner and making it adaptable and accessible to all iCCA modules. We empirically demonstrate the advantage of using an adaptive model over a static model and pure learning approaches in an example GridWorld problem and a UAV mission planning scenario with 200 million possibilities. Finally we discuss two extensions to our approach to handle cases where the true model can not be captured exactly through the presumed functional form.en_US
dc.description.sponsorshipUnited States. Air Force Office of Scientific Research (FA9550-09-1-0522)en_US
dc.description.sponsorshipNatural Sciences and Engineering Research Council of Canadaen_US
dc.description.sponsorshipUSAF (FA9550-09-1-0522)en_US
dc.language.isoen_US
dc.relation.isversionofhttp://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6314997en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alike 3.0en_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/en_US
dc.sourceMIT web domainen_US
dc.titleModel Estimation Within Planning and Learningen_US
dc.typeArticleen_US
dc.identifier.citationGeramifard, A.; Redding, J.D.; Joseph, J.; Roy, N.; How, J.P., "Model estimation within planning and learning," American Control Conference (ACC), 2012 , vol., no., pp.793,799, 27-29 June 2012.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Aerospace Controls Laboratoryen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Aeronautics and Astronauticsen_US
dc.contributor.mitauthorGeramifard, Alborzen_US
dc.contributor.mitauthorRedding, Joshua D.en_US
dc.contributor.mitauthorJoseph, Joshua Masonen_US
dc.relation.journalAmerican Control Conference (ACC), 2012en_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.identifier.orcidhttps://orcid.org/0000-0002-2508-1957
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record