Show simple item record

dc.contributor.authorRagsdale, Stephen W.
dc.contributor.authorYi, Li
dc.contributor.authorBender, Güneş
dc.contributor.authorGupta, Nirupama
dc.contributor.authorKung, Yan
dc.contributor.authorYan, Lifen
dc.contributor.authorStich, Troy A.
dc.contributor.authorDoukov, Tzanko I.
dc.contributor.authorLeichert, Lars
dc.contributor.authorJenkins, Paul M.
dc.contributor.authorBianchetti, Christopher M.
dc.contributor.authorGeorge, Simon J.
dc.contributor.authorCramer, Stephen P.
dc.contributor.authorBritt, R. David
dc.contributor.authorJakob, Ursula
dc.contributor.authorMartens, Jeffrey R.
dc.contributor.authorPhillips, George N.
dc.contributor.authorDrennan, Catherine L
dc.date.accessioned2013-11-07T19:57:12Z
dc.date.available2013-11-07T19:57:12Z
dc.date.issued2012-06
dc.date.submitted2012-03
dc.identifier.issn0300-5127
dc.identifier.issn1470-8752
dc.identifier.urihttp://hdl.handle.net/1721.1/82026
dc.description.abstractThe present paper describes general principles of redox catalysis and redox regulation in two diverse systems. The first is microbial metabolism of CO by the Wood–Ljungdahl pathway, which involves the conversion of CO or H2/CO2 into acetyl-CoA, which then serves as a source of ATP and cell carbon. The focus is on two enzymes that make and utilize CO, CODH (carbon monoxide dehydrogenase) and ACS (acetyl-CoA synthase). In this pathway, CODH converts CO2 into CO and ACS generates acetyl-CoA in a reaction involving Ni·CO, methyl-Ni and acetyl-Ni as catalytic intermediates. A 70 Å (1 Å=0.1 nm) channel guides CO, generated at the active site of CODH, to a CO ‘cage’ near the ACS active site to sequester this reactive species and assure its rapid availability to participate in a kinetically coupled reaction with an unstable Ni(I) state that was recently trapped by photolytic, rapid kinetic and spectroscopic studies. The present paper also describes studies of two haem-regulated systems that involve a principle of metabolic regulation interlinking redox, haem and CO. Recent studies with HO2 (haem oxygenase-2), a K+ ion channel (the BK channel) and a nuclear receptor (Rev-Erb) demonstrate that this mode of regulation involves a thiol–disulfide redox switch that regulates haem binding and that gas signalling molecules (CO and NO) modulate the effect of haem.en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (NIH grant GM69857)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (NIH grant GM39451)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (NIH grant HL 102662)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (NIH grant GM65440)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (NIH grant GM48242)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (NIH grant Y1-GM- 1104)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (NIH grant GM065318)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (NIH grant AG027349)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (grant number CHE-0745353)en_US
dc.description.sponsorshipUnited States. Dept. of Energy. Office of Biological and Environmental Researchen_US
dc.description.sponsorshipHoward Hughes Medical Institute (Investigator)en_US
dc.language.isoen_US
dc.publisherPortland Pressen_US
dc.relation.isversionofhttp://dx.doi.org/10.1042/bst20120083en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alike 3.0en_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/en_US
dc.sourcePMCen_US
dc.titleRedox, haem and CO in enzymatic catalysis and regulationen_US
dc.typeArticleen_US
dc.identifier.citationRagsdale, Stephen W., Li Yi, Güneş Bender, Nirupama Gupta, Yan Kung, Lifen Yan, Troy A. Stich, et al. “Redox, haem and CO in enzymatic catalysis and regulation.” Biochemical Society Transactions 40, no. 3 (June 1, 2012): 501-507.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Biologyen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemistryen_US
dc.contributor.mitauthorKung, Yanen_US
dc.contributor.mitauthorCramer, Stephen P.en_US
dc.contributor.mitauthorDrennan, Catherine L.en_US
dc.relation.journalBiochemical Society Transactionsen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsRagsdale, Stephen W.; Yi, Li; Bender, Güneş; Gupta, Nirupama; Kung, Yan; Yan, Lifen; Stich, Troy A.; Doukov, Tzanko; Leichert, Lars; Jenkins, Paul M.; Bianchetti, Christopher M.; George, Simon J.; Cramer, Stephen P.; Britt, R. David; Jakob, Ursula; Martens, Jeffrey R.; Phillips, George N.; Drennan, Catherine L.en_US
dc.identifier.orcidhttps://orcid.org/0000-0001-5486-2755
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record