MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Mechanism and Transition-State Structures for Nickel-Catalyzed Reductive Alkyne−Aldehyde Coupling Reactions

Author(s)
McCarren, Patrick R.; Liu, Peng; Cheong, Paul Ha-Yeon; Jamison, Timothy F.; Houk, K. N.
Thumbnail
DownloadJamison_Mechanism and transition.pdf (1.423Mb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
The mechanism of nickel-catalyzed reductive alkyne−aldehyde coupling reactions has been investigated using density functional theory. The preferred mechanism involves oxidative cyclization to form the nickeladihydrofuran intermediate followed by transmetalation and reductive elimination. The rate- and selectivity-determining oxidative cyclization transition state is analyzed in detail. The d → π* back-donation stabilizes the transition state and leads to higher reactivity for alkynes than alkenes. Strong Lewis acids accelerate the couplings with both alkynes and alkenes by coordinating with the aldehyde oxygen in the transition state.
Date issued
2009-04
URI
http://hdl.handle.net/1721.1/82098
Department
Massachusetts Institute of Technology. Department of Chemistry
Journal
Journal of the American Chemical Society
Publisher
American Chemical Society (ACS)
Citation
McCarren, P. R., Peng Liu, Paul Ha-Yeon Cheong, Timothy F. Jamison, and K. N. Houk. “Mechanism and Transition-State Structures for Nickel-Catalyzed Reductive Alkyne−Aldehyde Coupling Reactions.” Journal of the American Chemical Society 131, no. 19 (May 20, 2009): 6654-6655.
Version: Author's final manuscript
ISSN
0002-7863
1520-5126

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.