MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Nanowire-Mediated Delivery Enables Functional Interrogation of Primary Immune Cells: Application to the Analysis of Chronic Lymphocytic Leukemia

Author(s)
Shalek, Alex K.; Gaublomme, Jellert T.; Wang, Lili; Yosef, Nir; Chevrier, Nicolas; Andersen, Mette S.; Robinson, Jacob T.; Pochet, Nathalie; Neuberg, Donna S.; Gertner, Rona S.; Amit, Ido; Brown, Jennifer R.; Hacohen, Nir; Regev, Aviv; Wu, Catherine J.; Park, Hongkun; ... Show more Show less
Thumbnail
DownloadShalek_2012-Nanowire-mediated delivery.pdf (1.259Mb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
A circuit level understanding of immune cells and hematological cancers has been severely impeded by a lack of techniques that enable intracellular perturbation without significantly altering cell viability and function. Here, we demonstrate that vertical silicon nanowires (NWs) enable gene-specific manipulation of diverse murine and human immune cells with negligible toxicity. To illustrate the power of the technique, we then apply NW-mediated gene silencing to investigate the role of the Wnt signaling pathway in chronic lymphocytic leukemia (CLL). Remarkably, CLL-B cells from different patients exhibit tremendous heterogeneity in their response to the knockdown of a single gene, LEF1. This functional heterogeneity defines three distinct patient groups not discernible by conventional CLL cytogenetic markers and provides a prognostic indicator for patients’ time to first therapy. Analyses of gene expression signatures associated with these functional patient subgroups reveal unique insights into the underlying molecular basis for disease heterogeneity. Overall, our findings suggest a functional classification that can potentially guide the selection of patient-specific therapies in CLL and highlight the opportunities for nanotechnology to drive biological inquiry.
Date issued
2012-11
URI
http://hdl.handle.net/1721.1/82108
Department
Massachusetts Institute of Technology. Department of Biology
Journal
Nano Letters
Publisher
American Chemical Society (ACS)
Citation
Shalek, Alex K., Jellert T. Gaublomme, Lili Wang, Nir Yosef, Nicolas Chevrier, Mette S. Andersen, Jacob T. Robinson, et al. “Nanowire-Mediated Delivery Enables Functional Interrogation of Primary Immune Cells: Application to the Analysis of Chronic Lymphocytic Leukemia.” Nano Letters 12, no. 12 (December 12, 2012): 6498-6504. © 2012 American Chemical Society
Version: Final published version
ISSN
1530-6984
1530-6992

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.