Show simple item record

dc.contributor.authorSrinivasan, Siddarth
dc.contributor.authorChoi, Wonjae
dc.contributor.authorPark, Kyoo-Chul
dc.contributor.authorChhatre, Shreerang S.
dc.contributor.authorCohen, Robert E.
dc.contributor.authorMcKinley, Gareth H.
dc.contributor.authorPark, Kyoo Chul
dc.date.accessioned2013-11-20T20:27:30Z
dc.date.available2013-11-20T20:27:30Z
dc.date.issued2013
dc.date.submitted2013-02
dc.identifier.issn1744-683X
dc.identifier.issn1744-6848
dc.identifier.urihttp://hdl.handle.net/1721.1/82518
dc.description.abstractWe estimate the effective Navier-slip length for flow over a spray-fabricated liquid-repellent surface which supports a composite solid–air–liquid interface or ‘Cassie–Baxter’ state. The morphology of the coated substrate consists of randomly distributed corpuscular microstructures which encapsulate a film of trapped air (or ‘plastron’) upon contact with liquid. The reduction in viscous skin friction due to the plastron is evaluated using torque measurements in a parallel plate rheometer resulting in a measured slip length of bslip z 39 mm, comparable to the mean periodicity of the microstructure evaluated from confocal fluorescence microscopy. The introduction of a large primary length-scale using dual-textured spray-coated meshes increases the magnitude of the effective slip length to values in the range 94 mm # b[subscript slip] # 213 mm depending on the geometric features of the mesh. The wetted solid fractions on each mesh are calculated from free surface simulations on model sinusoidal mesh geometries. The trend in measured values of b[subscript slip] with the mesh periodicity L and the computed wetted solid-fraction ro[subscript s] are found to be consistent with existing analytic predictions.en_US
dc.description.sponsorshipUnited States. Army Research Office (Contract W911NF-07-D-0004)en_US
dc.description.sponsorshipUnited States. Office of Naval Research (Contract 3002452814)en_US
dc.description.sponsorshipAir Force Research Laboratory (Wright-Patterson Air Force Base, Ohio). Propulsion Directorateen_US
dc.description.sponsorshipUnited States. Air Force Office of Scientific Researchen_US
dc.language.isoen_US
dc.publisherRoyal Society of Chemistryen_US
dc.relation.isversionofhttp://dx.doi.org/10.1039/c3sm50445jen_US
dc.rightsArticle is available under a Creative Commons licenseen_US
dc.rights.urihttp://creativecommons.org/en_US
dc.sourceRSCen_US
dc.titleDrag reduction for viscous laminar flow on spray-coated non-wetting surfacesen_US
dc.typeArticleen_US
dc.identifier.citationSrinivasan, Siddarth, Wonjae Choi, Kyoo-Chul Park, Shreerang S. Chhatre, Robert E. Cohen, and Gareth H. McKinley. “Drag reduction for viscous laminar flow on spray-coated non-wetting surfaces.” Soft Matter 9, no. 24 (2013): 5691.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemical Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineeringen_US
dc.contributor.mitauthorSrinivasan, Siddarthen_US
dc.contributor.mitauthorPark, Kyoo Chulen_US
dc.contributor.mitauthorChhatre, Shreerang S.en_US
dc.contributor.mitauthorCohen, Robert E.en_US
dc.contributor.mitauthorMcKinley, Gareth H.en_US
dc.relation.journalSoft Matteren_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsSrinivasan, Siddarth; Choi, Wonjae; Park, Kyoo-Chul; Chhatre, Shreerang S.; Cohen, Robert E.; McKinley, Gareth H.en_US
dc.identifier.orcidhttps://orcid.org/0000-0003-4591-6090
dc.identifier.orcidhttps://orcid.org/0000-0001-8323-2779
dc.identifier.orcidhttps://orcid.org/0000-0003-1085-7692
dspace.mitauthor.errortrue
mit.licensePUBLISHER_CCen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record