MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Imaging Protein–Protein Interactions inside Living Cells via Interaction-Dependent Fluorophore Ligation

Author(s)
Slavoff, Sarah A.; Liu, Daniel S.; Cohen, Justin D.; Ting, Alice Y.
Thumbnail
Downloadting_Imaging protein.pdf (1.425Mb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
We report a new method, Interaction-Dependent PRobe Incorporation Mediated by Enzymes, or ID-PRIME, for imaging protein–protein interactions (PPIs) inside living cells. ID-PRIME utilizes a mutant of Escherichia coli lipoic acid ligase, LplA[superscript W37V], which can catalyze the covalent ligation of a coumarin fluorophore onto a peptide recognition sequence called LAP1. The affinity between the ligase and LAP1 is tuned such that, when each is fused to a protein partner of interest, LplA[superscript W37V] labels LAP1 with coumarin only when the protein partners to which they are fused bring them together. Coumarin labeling in the absence of such interaction is low or undetectable. Characterization of ID-PRIME in living mammalian cells shows that multiple protein–protein interactions can be imaged (FRB–FKBP, Fos–Jun, and neuroligin–PSD-95), with as little as 10 min of coumarin treatment. The signal intensity and detection sensitivity are similar to those of the widely used fluorescent protein complementation technique (BiFC) for PPI detection, without the disadvantage of irreversible complex trapping. ID-PRIME provides a powerful and complementary approach to existing methods for visualization of PPIs in living cells with spatial and temporal resolution.
Date issued
2011-11
URI
http://hdl.handle.net/1721.1/82558
Department
Massachusetts Institute of Technology. Department of Chemistry
Journal
Journal of the American Chemical Society
Publisher
American Chemical Society (ACS)
Citation
Slavoff, Sarah A., Daniel S. Liu, Justin D. Cohen, and Alice Y. Ting. “Imaging Protein–Protein Interactions inside Living Cells via Interaction-Dependent Fluorophore Ligation.” Journal of the American Chemical Society 133, no. 49 (December 14, 2011): 19769-19776.
Version: Author's final manuscript
ISSN
0002-7863
1520-5126

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.