Show simple item record

dc.contributor.authorStubbe, JoAnne
dc.contributor.authorCotruvo, Joseph A.
dc.date.accessioned2013-11-25T13:10:22Z
dc.date.available2013-11-25T13:10:22Z
dc.date.issued2012-08
dc.date.submitted2012-07
dc.identifier.issn1756-5901
dc.identifier.issn1756-591X
dc.identifier.urihttp://hdl.handle.net/1721.1/82565
dc.description.abstractHow cells ensure correct metallation of a given protein and whether a degree of promiscuity in metal binding has evolved are largely unanswered questions. In a classic case, iron- and manganese-dependent superoxide dismutases (SODs) catalyze the disproportionation of superoxide using highly similar protein scaffolds and nearly identical active sites. However, most of these enzymes are active with only one metal, although both metals can bind in vitro and in vivo. Iron(II) and manganese(II) bind weakly to most proteins and possess similar coordination preferences. Their distinct redox properties suggest that they are unlikely to be interchangeable in biological systems except when they function in Lewis acid catalytic roles, yet recent work suggests this is not always the case. This review summarizes the diversity of ways in which iron and manganese are substituted in similar or identical protein frameworks. As models, we discuss (1) enzymes, such as epimerases, thought to use Fe[superscript II] as a Lewis acid under normal growth conditions but which switch to Mn[superscript II] under oxidative stress; (2) extradiol dioxygenases, which have been found to use both Fe[superscript II] and Mn[superscript II], the redox role of which in catalysis remains to be elucidated; (3) SODs, which use redox chemistry and are generally metal-specific; and (4) the class I ribonucleotide reductases (RNRs), which have evolved unique biosynthetic pathways to control metallation. The primary focus is the class Ib RNRs, which can catalyze formation of a stable radical on a tyrosine residue in their β2 subunits using either a di-iron or a recently characterized dimanganese cofactor. The physiological roles of enzymes that can switch between iron and manganese cofactors are discussed, as are insights obtained from the studies of many groups regarding iron and manganese homeostasis and the divergent and convergent strategies organisms use for control of protein metallation. We propose that, in many of the systems discussed, “discrimination” between metals is not performed by the protein itself, but it is instead determined by the environment in which the protein is expressed.en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (Grant GM81393)en_US
dc.language.isoen_US
dc.publisherRoyal Society of Chemistry, Theen_US
dc.relation.isversionofhttp://dx.doi.org/10.1039/c2mt20142aen_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alike 3.0en_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/en_US
dc.sourcePMCen_US
dc.titleMetallation and mismetallation of iron and manganese proteins in vitro and in vivo: the class I ribonucleotide reductases as a case studyen_US
dc.typeArticleen_US
dc.identifier.citationCotruvo, Jr, Joseph A., and JoAnne Stubbe. “Metallation and mismetallation of iron and manganese proteins in vitro and in vivo: the class I ribonucleotide reductases as a case study.” Metallomics 4, no. 10 (2012): 1020.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Biologyen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemistryen_US
dc.contributor.mitauthorCotruvo, Joseph A.en_US
dc.contributor.mitauthorStubbe, JoAnneen_US
dc.relation.journalMetallomicsen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsCotruvo, Jr, Joseph A.; Stubbe, JoAnneen_US
dc.identifier.orcidhttps://orcid.org/0000-0001-8076-4489
dspace.mitauthor.errortrue
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record