Show simple item record

dc.contributor.authorFriedlander, Ronn Samuel
dc.contributor.authorVlamakis, Hera
dc.contributor.authorKim, Philseok
dc.contributor.authorKhan, Mughees
dc.contributor.authorKolter, Roberto
dc.contributor.authorAizenberg, Joanna
dc.date.accessioned2013-12-30T16:49:34Z
dc.date.available2013-12-30T16:49:34Z
dc.date.issued2013-03
dc.date.submitted2012-11
dc.identifier.issn0027-8424
dc.identifier.issn1091-6490
dc.identifier.urihttp://hdl.handle.net/1721.1/83364
dc.description.abstractBiofilms, surface-bound communities of microbes, are economically and medically important due to their pathogenic and obstructive properties. Among the numerous strategies to prevent bacterial adhesion and subsequent biofilm formation, surface topography was recently proposed as a highly nonspecific method that does not rely on small-molecule antibacterial compounds, which promote resistance. Here, we provide a detailed investigation of how the introduction of submicrometer crevices to a surface affects attachment of Escherichia coli. These crevices reduce substrate surface area available to the cell body but increase overall surface area. We have found that, during the first 2 h, adhesion to topographic surfaces is significantly reduced compared with flat controls, but this behavior abruptly reverses to significantly increased adhesion at longer exposures. We show that this reversal coincides with bacterially induced wetting transitions and that flagellar filaments aid in adhesion to these wetted topographic surfaces. We demonstrate that flagella are able to reach into crevices, access additional surface area, and produce a dense, fibrous network. Mutants lacking flagella show comparatively reduced adhesion. By varying substrate crevice sizes, we determine the conditions under which having flagella is most advantageous for adhesion. These findings strongly indicate that, in addition to their role in swimming motility, flagella are involved in attachment and can furthermore act as structural elements, enabling bacteria to overcome unfavorable surface topographies. This work contributes insights for the future design of antifouling surfaces and for improved understanding of bacterial behavior in native, structured environments.en_US
dc.description.sponsorshipUnited States. Office of Naval Research (Award 00014-11-1-0641)en_US
dc.description.sponsorshipHarvard University. BASF Advanced Research Initiativeen_US
dc.description.sponsorshipNational Science Foundation (U.S.). Graduate Research Fellowship Programen_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Award ECS-0335765)en_US
dc.language.isoen_US
dc.publisherNational Academy of Sciences (U.S.)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1073/pnas.1219662110en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourcePNASen_US
dc.titleBacterial flagella explore microscale hummocks and hollows to increase adhesionen_US
dc.typeArticleen_US
dc.identifier.citationFriedlander, R. S., H. Vlamakis, P. Kim, M. Khan, R. Kolter, and J. Aizenberg. “Bacterial flagella explore microscale hummocks and hollows to increase adhesion.” Proceedings of the National Academy of Sciences 110, no. 14 (April 2, 2013): 5624-5629.en_US
dc.contributor.departmentWhitaker College of Health Sciences and Technologyen_US
dc.contributor.departmentHarvard University--MIT Division of Health Sciences and Technologyen_US
dc.contributor.mitauthorFriedlander, Ronn Samuelen_US
dc.relation.journalProceedings of the National Academy of Sciencesen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsFriedlander, R. S.; Vlamakis, H.; Kim, P.; Khan, M.; Kolter, R.; Aizenberg, J.en_US
mit.licensePUBLISHER_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record