Show simple item record

dc.contributor.authorMiller, Miles Aaron
dc.contributor.authorMeyer, Aaron Samuel
dc.contributor.authorBeste, Michael T.
dc.contributor.authorLasisi, Zainab A.
dc.contributor.authorReddy, Sonika N.
dc.contributor.authorJeng, Karen
dc.contributor.authorGriffith, Linda G.
dc.contributor.authorLauffenburger, Douglas A.
dc.contributor.authorChen, Chia-Hung
dc.contributor.authorHan, Jongyoon
dc.contributor.authorIsaacson, Keith B.
dc.date.accessioned2013-12-30T18:34:02Z
dc.date.available2013-12-30T18:34:02Z
dc.date.issued2013-05
dc.date.submitted2012-12
dc.identifier.issn0027-8424
dc.identifier.issn1091-6490
dc.identifier.urihttp://hdl.handle.net/1721.1/83378
dc.description.abstractA Disintegrin and Metalloproteinases (ADAMs) are the principal enzymes for shedding receptor tyrosine kinase (RTK) ectodomains and ligands from the cell surface. Multiple layers of activity regulation, feedback, and catalytic promiscuity impede our understanding of context-dependent ADAM “sheddase” function and our ability to predictably target that function in disease. This study uses combined measurement and computational modeling to examine how various growth factor environments influence sheddase activity and cell migration in the invasive disease of endometriosis. We find that ADAM-10 and -17 dynamically integrate numerous signaling pathways to direct cell motility. Data-driven modeling reveals that induced cell migration is a quantitative function of positive feedback through EGF ligand release and negative feedback through RTK shedding. Although sheddase inhibition prevents autocrine ligand shedding and resultant EGF receptor transactivation, it also leads to an accumulation of phosphorylated receptors (HER2, HER4, and MET) on the cell surface, which subsequently enhances Jnk/p38 signaling. Jnk/p38 inhibition reduces cell migration by blocking sheddase activity while additionally preventing the compensatory signaling from accumulated RTKs. In contrast, Mek inhibition reduces ADAM-10 and -17 activities but fails to inhibit compensatory signaling from accumulated RTKs, which actually enhances cell motility in some contexts. Thus, here we present a sheddase-based mechanism of rapidly acquired resistance to Mek inhibition through reduced RTK shedding that can be overcome with rationally directed combination inhibitor treatment. We investigate the clinical relevance of these findings using targeted proteomics of peritoneal fluid from endometriosis patients and find growth-factor–driven ADAM-10 activity and MET shedding are jointly dysregulated with disease.en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (Grant R01-EB10246)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (Grant U54-CA112967)en_US
dc.description.sponsorshipDavid H. Koch Institute for Integrative Cancer Research at MIT (Frontier Research Program Initiator Award)en_US
dc.description.sponsorshipRepligen Corporation (Fellowship in Cancer Research)en_US
dc.language.isoen_US
dc.publisherNational Academy of Sciences (U.S.)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1073/pnas.1222387110en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourcePNASen_US
dc.titleADAM-10 and -17 regulate endometriotic cell migration via concerted ligand and receptor shedding feedback on kinase signalingen_US
dc.typeArticleen_US
dc.identifier.citationMiller, M. A., A. S. Meyer, M. T. Beste, Z. Lasisi, S. Reddy, K. W. Jeng, C.-H. Chen, et al. “ADAM-10 and -17 regulate endometriotic cell migration via concerted ligand and receptor shedding feedback on kinase signaling.” Proceedings of the National Academy of Sciences 110, no. 22 (May 28, 2013): E2074-E2083.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Center for Gynepathology Researchen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Biological Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Biologyen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemical Engineeringen_US
dc.contributor.mitauthorMiller, Miles Aaronen_US
dc.contributor.mitauthorMeyer, Aaron Samuelen_US
dc.contributor.mitauthorBeste, Michael T.en_US
dc.contributor.mitauthorLasisi, Zainab A.en_US
dc.contributor.mitauthorReddy, Sonika N.en_US
dc.contributor.mitauthorJeng, Karenen_US
dc.contributor.mitauthorGriffith, Linda G.en_US
dc.contributor.mitauthorLauffenburger, Douglas A.en_US
dc.relation.journalProceedings of the National Academy of Sciencesen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsMiller, M. A.; Meyer, A. S.; Beste, M. T.; Lasisi, Z.; Reddy, S.; Jeng, K. W.; Chen, C.-H.; Han, J.; Isaacson, K.; Griffith, L. G.; Lauffenburger, D. A.en_US
dc.identifier.orcidhttps://orcid.org/0000-0002-1801-5548
dspace.mitauthor.errortrue
mit.licensePUBLISHER_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record