Show simple item record

dc.contributor.authorSoukas, Alexander A.
dc.contributor.authorCarr, Christopher E.
dc.contributor.authorRuvkun, Gary
dc.date.accessioned2013-12-30T20:46:49Z
dc.date.available2013-12-30T20:46:49Z
dc.date.issued2013-10
dc.date.submitted2013-04
dc.identifier.issn1553-7404
dc.identifier.issn1553-7390
dc.identifier.urihttp://hdl.handle.net/1721.1/83406
dc.description.abstractLysosomes are membrane-bound organelles that contain acid hydrolases that degrade cellular proteins, lipids, nucleic acids, and oligosaccharides, and are important for cellular maintenance and protection against age-related decline. Lysosome related organelles (LROs) are specialized lysosomes found in organisms from humans to worms, and share many of the features of classic lysosomes. Defective LROs are associated with human immune disorders and neurological disease. Caenorhabditis elegans LROs are the site of concentration of vital dyes such as Nile red as well as age-associated autofluorescence. Even though certain short-lived mutants have high LRO Nile red and high autofluorescence, and other long-lived mutants have low LRO Nile red and low autofluorescence, these two biologies are distinct. We identified a genetic pathway that modulates aging-related LRO phenotypes via serotonin signaling and the gene kat-1, which encodes a mitochondrial ketothiolase. Regulation of LRO phenotypes by serotonin and kat-1 in turn depend on the proton-coupled, transmembrane transporter SKAT-1. skat-1 loss of function mutations strongly suppress the high LRO Nile red accumulation phenotype of kat-1 mutation. Using a systems approach, we further analyzed the role of 571 genes in LRO biology. These results highlight a gene network that modulates LRO biology in a manner dependent upon the conserved protein kinase TOR complex 2. The results implicate new genetic pathways involved in LRO biology, aging related physiology, and potentially human diseases of the LRO.en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (Office of Research Infrastructure Programs (P40 OD010440)en_US
dc.language.isoen_US
dc.publisherPublic Library of Scienceen_US
dc.relation.isversionofhttp://dx.doi.org/10.1371/journal.pgen.1003908en_US
dc.rights.urihttp://creativecommons.org/licenses/by/2.5/en_US
dc.sourcePLoSen_US
dc.titleGenetic Regulation of Caenorhabditis elegans Lysosome Related Organelle Functionen_US
dc.typeArticleen_US
dc.identifier.citationSoukas, Alexander A., Christopher E. Carr, and Gary Ruvkun. “Genetic Regulation of Caenorhabditis elegans Lysosome Related Organelle Function.” Edited by Stuart K. Kim. PLoS Genetics 9, no. 10 (October 24, 2013): e1003908.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciencesen_US
dc.contributor.mitauthorCarr, Christopher E.en_US
dc.relation.journalPLoS Geneticsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsSoukas, Alexander A.; Carr, Christopher E.; Ruvkun, Garyen_US
mit.licensePUBLISHER_CCen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record