MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Long-Range Correlations in Stride Intervals May Emerge from Non-Chaotic Walking Dynamics

Author(s)
Ahn, Jooeun; Hogan, Neville
Thumbnail
DownloadAhn-2013-Long-range correlati.pdf (1.724Mb)
PUBLISHER_CC

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
http://creativecommons.org/licenses/by/2.5/
Metadata
Show full item record
Abstract
Stride intervals of normal human walking exhibit long-range temporal correlations. Similar to the fractal-like behaviors observed in brain and heart activity, long-range correlations in walking have commonly been interpreted to result from chaotic dynamics and be a signature of health. Several mathematical models have reproduced this behavior by assuming a dominant role of neural central pattern generators (CPGs) and/or nonlinear biomechanics to evoke chaos. In this study, we show that a simple walking model without a CPG or biomechanics capable of chaos can reproduce long-range correlations. Stride intervals of the model revealed long-range correlations observed in human walking when the model had moderate orbital stability, which enabled the current stride to affect a future stride even after many steps. This provides a clear counterexample to the common hypothesis that a CPG and/or chaotic dynamics is required to explain the long-range correlations in healthy human walking. Instead, our results suggest that the long-range correlation may result from a combination of noise that is ubiquitous in biological systems and orbital stability that is essential in general rhythmic movements.
Date issued
2013-09
URI
http://hdl.handle.net/1721.1/83473
Department
Massachusetts Institute of Technology. Department of Brain and Cognitive Sciences; Massachusetts Institute of Technology. Department of Mechanical Engineering
Journal
PLoS ONE
Publisher
Public Library of Science
Citation
Ahn, Jooeun, and Neville Hogan. “Long-Range Correlations in Stride Intervals May Emerge from Non-Chaotic Walking Dynamics.” Edited by Ramesh Balasubramaniam. PLoS ONE 8, no. 9 (September 23, 2013): e73239.
Version: Final published version
ISSN
1932-6203

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.