Specific Visualization of Nitric Oxide in the Vasculature with Two-Photon Microscopy Using a Copper Based Fluorescent Probe
Author(s)
Ghosh, Mitrajit; van den Akker, Nynke M. S.; Wijnands, Karolina A. P.; Poeze, Martijn; Weber, Christian; McQuade, Lindsey E.; Pluth, Michael D.; Lippard, Stephen J.; Post, Mark J.; Molin, Daniel G. M.; van Zandvoort, Marc A. M. J.; ... Show more Show less
DownloadGhosh-2013-Specific Visualizati.pdf (2.209Mb)
PUBLISHER_CC
Publisher with Creative Commons License
Creative Commons Attribution
Terms of use
Metadata
Show full item recordAbstract
To study the role and (sub) cellular nitric oxide (NO) constitution in various disease processes, its direct and specific detection in living cells and tissues is a major requirement. Several methods are available to measure the oxidation products of NO, but the detection of NO itself has proved challenging. We visualized NO production using a NO-sensitive copper-based fluorescent probe (Cu [subscript 2]FL2E) and two-photon laser scanning microscopy (TPLSM). Cu [subscript 2]FL2E demonstrated high sensitivity and specificity for NO synthesis, combined with low cytotoxicity. Furthermore, Cu [subscript 2]FL2E showed superior sensitivity over the conventionally used Griess assay. NO specificity of Cu [subscript 2]FL2E was confirmed in vitro in human coronary arterial endothelial cells and porcine aortic endothelial cells using various triggers for NO production. Using TPLSM on ex vivo mounted murine carotid artery and aorta, the applicability of the probe to image NO production in both endothelial cells and smooth muscle cells was shown. NO-production and time course was detected for multiple stimuli such as flow, acetylcholine and hydrogen peroxide and its correlation with vasodilation was demonstrated. NO-specific fluorescence and vasodilation was abrogated in the presence of NO-synthesis blocker L-NAME. Finally, the influence of carotid precontraction and vasorelaxation validated the functional properties of vessels. Specific visualization of NO production in vessels with Cu [subscript 2]FL2E-TPLSM provides a valid method for studying spatial-temporal synthesis of NO in vascular biology at an unprecedented level. This approach enables investigation of the pathways involved in the complex interplay between NO and vascular (dys) function.
Date issued
2013-09Department
Massachusetts Institute of Technology. Department of ChemistryJournal
PLoS ONE
Publisher
Public Library of Science
Citation
Ghosh, Mitrajit, Nynke M. S. van den Akker, Karolina A. P. Wijnands, Martijn Poeze, Christian Weber, Lindsey E. McQuade, Michael D. Pluth, et al. “Specific Visualization of Nitric Oxide in the Vasculature with Two-Photon Microscopy Using a Copper Based Fluorescent Probe.” Edited by David D. Roberts. PLoS ONE 8, no. 9 (September 23, 2013): e75331.
Version: Final published version
ISSN
1932-6203