MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

MicroRNA Destabilization Enables Dynamic Regulation of the miR-16 Family in Response to Cell-Cycle Changes

Author(s)
Rissland, Olivia S.; Hong, Sue-Jean; Bartel, David; Rissland, Olivia S.
Thumbnail
DownloadBartel_MicroRNA.pdf (1.779Mb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
The miR-16 family, which targets genes important for the G1-S transition, is a known modulator of the cell cycle, and members of this family are often deleted or downregulated in many types of cancers. Here, we report the reciprocal relationship—that of the cell cycle controlling the miR-16 family. Levels of this family increase rapidly as cells are arrested in G0. Conversely, as cells are released from G0 arrest, levels of the miR-16 family rapidly decrease. Such rapid changes are made possible by the unusual instabilities of several family members. The repression mediated by the miR-16 family is sensitive to these cell-cycle changes, which suggests that the rapid upregulation of the miR-16 family reinforces cell-cycle arrest in G0. Upon cell-cycle re-entry, the rapid decay of several members allows levels of the family to decrease, alleviating repression of target genes and allowing proper resumption of the cell cycle.
Date issued
2011-09
URI
http://hdl.handle.net/1721.1/83616
Department
Massachusetts Institute of Technology. Department of Biology; Whitehead Institute for Biomedical Research
Journal
Molecular Cell
Publisher
Elsevier B.V.
Citation
Rissland, Olivia S., Sue-Jean Hong, and David P. Bartel. “MicroRNA Destabilization Enables Dynamic Regulation of the miR-16 Family in Response to Cell-Cycle Changes.” Molecular Cell 43, no. 6 (September 2011): 993-1004.© 2011 Elsevier Inc.
Version: Final published version
ISSN
10972765
1097-4172

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.