Show simple item record

dc.contributor.authorChiu, Jiawei
dc.contributor.authorDemanet, Laurent
dc.date.accessioned2014-01-13T14:56:07Z
dc.date.available2014-01-13T14:56:07Z
dc.date.issued2013-09
dc.date.submitted2011-10
dc.identifier.issn0895-4798
dc.identifier.issn1095-7162
dc.identifier.urihttp://hdl.handle.net/1721.1/83890
dc.description.abstractA skeleton decomposition of a matrix A is any factorization of the form A[subscript :C]ZA[subscript R:], where A[subscript :C] comprises columns of A, and A[subscript R:] comprises rows of A. In this paper, we investigate the conditions under which random sampling of C and R results in accurate skeleton decompositions. When the singular vectors (or more generally the generating vectors) are incoherent, we show that a simple algorithm returns an accurate skeleton in sublinear O(ℓ[superscript 3]) time from ℓ ~ k log n rows and columns drawn uniformly at random, with an approximation error of the form O([n over ℓ]σ[subscript k]) whereσ[subscript k] is the kth singular value of A. We discuss the crucial role that regularization plays in forming the middle matrix U as a pseudoinverse of the restriction A[subscript RC] of A to rows in R and columns in C. The proof methods enable the analysis of two alternative sublinear-time algorithms, based on the rank-revealing QR decomposition, which allows us to tighten the number of rows and/or columns to k with error bound proportional to σ[subscript k].en_US
dc.description.sponsorshipNational Science Foundation (U.S.)en_US
dc.description.sponsorshipAlfred P. Sloan Foundationen_US
dc.language.isoen_US
dc.publisherSociety for Industrial and Applied Mathematicsen_US
dc.relation.isversionofhttp://dx.doi.org/10.1137/110852310en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceSociety for Industrial and Applied Mathematicsen_US
dc.titleSublinear Randomized Algorithms for Skeleton Decompositionsen_US
dc.typeArticleen_US
dc.identifier.citationChiu, Jiawei, and Laurent Demanet. “Sublinear Randomized Algorithms for Skeleton Decompositions.” SIAM Journal on Matrix Analysis and Applications 34, no. 3 (July 9, 2013): 1361-1383. © 2013, Society for Industrial and Applied Mathematicsen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.mitauthorChiu, Jiaweien_US
dc.contributor.mitauthorDemanet, Laurenten_US
dc.relation.journalSIAM Journal on Matrix Analysis and Applicationsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsChiu, Jiawei; Demanet, Laurenten_US
dc.identifier.orcidhttps://orcid.org/0000-0001-7052-5097
mit.licensePUBLISHER_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record