MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

ψ-epistemic theories: The role of symmetry

Author(s)
Aaronson, Scott; Chua, Lynn; Lowther, George; Bouland, Adam Michael
Thumbnail
DownloadAaronson-2013-Psi-epistemic theories.pdf (307.4Kb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
Formalizing an old desire of Einstein, “ψ-epistemic theories” try to reproduce the predictions of quantum mechanics, while viewing quantum states as ordinary probability distributions over underlying objects called “ontic states.” Regardless of one's philosophical views about such theories, the question arises of whether one can cleanly rule them out by proving no-go theorems analogous to the Bell inequality. In the 1960s, Kochen and Specker (who first studied these theories) constructed an elegant ψ-epistemic theory for Hilbert space dimension d = 2, but also showed that any deterministic ψ-epistemic theory must be “measurement contextual” in dimensions 3 and higher. Last year, the topic attracted renewed attention, when Pusey, Barrett, and Rudolph (PBR) showed that any ψ-epistemic theory must “behave badly under tensor product.” In this paper, we prove that even without the Kochen-Specker or PBR assumptions, there are no ψ-epistemic theories in dimensions d ≥ 3 that satisfy two reasonable conditions: (1) symmetry under unitary transformations and (2) “maximum nontriviality” (meaning that the probability distributions corresponding to any two nonorthogonal states overlap). This no-go theorem holds if the ontic space is either the set of quantum states or the set of unitaries. The proof of this result, in the general case, uses some measure theory and differential geometry. On the other hand, we also show the surprising result that without the symmetry restriction, one can construct maximally nontrivial ψ-epistemic theories in every finite dimension d.
Date issued
2013-09
URI
http://hdl.handle.net/1721.1/84072
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science; Massachusetts Institute of Technology. Department of Mathematics
Journal
Physical Review A
Publisher
American Physical Society
Citation
Aaronson, Scott, Adam Bouland, Lynn Chua, and George Lowther. “ψ-epistemic theories: The role of symmetry.” Physical Review A 88, no. 3 (September 2013). © 2013 American Physical Society
Version: Final published version
ISSN
1050-2947
1094-1622

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.