Composite-pulse magnetometry with a solid-state quantum sensor
Author(s)
Hirose, Masashi; Cappellaro, Paola; Aiello, Clarice Demarchi
DownloadComposite-pulse-MagnetometryNatComms-Revised.pdf (450.4Kb)
PUBLISHER_POLICY
Publisher Policy
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Terms of use
Metadata
Show full item recordAbstract
The sensitivity of quantum magnetometer is challenged by control errors and, especially in the solid state, by their short coherence times. Refocusing techniques can overcome these limitations and improve the sensitivity to periodic fields, but they come at the cost of reduced bandwidth and cannot be applied to sense static or aperiodic fields. Here we experimentally demonstrate that continuous driving of the sensor spin by a composite pulse known as rotary-echo yields a flexible magnetometry scheme, mitigating both driving power imperfections and decoherence. A suitable choice of rotary-echo parameters compensates for different scenarios of noise strength and origin. The method can be applied to nanoscale sensing in variable environments or to realize noise spectroscopy. In a room-temperature implementation, based on a single electronic spin in diamond, composite-pulse magnetometry provides a tunable trade-off between sensitivities in the μTHz[superscript −1/2] range, comparable with those obtained with Ramsey spectroscopy, and coherence times approaching T[subscript 1].
Date issued
2013-01Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science; Massachusetts Institute of Technology. Department of Nuclear Science and EngineeringJournal
Nature Communications
Publisher
Nature Publishing Group
Citation
Aiello, Clarice D., Masashi Hirose, and Paola Cappellaro. “Composite-pulse magnetometry with a solid-state quantum sensor.” Nature Communications 4 (January 29, 2013): 1419.
Version: Author's final manuscript
ISSN
2041-1723