dc.contributor.author | Reshef, David N. | |
dc.contributor.author | Reshef, Yakir | |
dc.contributor.author | Grossman, Sharon Rachel | |
dc.contributor.author | Finucane, Hilary Kiyo | |
dc.contributor.author | McVean, Gilean | |
dc.contributor.author | Turnbaugh, Peter J. | |
dc.contributor.author | Mitzenmacher, Michael | |
dc.contributor.author | Sabeti, Pardis C. | |
dc.contributor.author | Lander, Eric Steven | |
dc.date.accessioned | 2014-02-03T13:18:52Z | |
dc.date.available | 2014-02-03T13:18:52Z | |
dc.date.issued | 2011-12 | |
dc.date.submitted | 2011-03 | |
dc.identifier.issn | 0036-8075 | |
dc.identifier.issn | 1095-9203 | |
dc.identifier.uri | http://hdl.handle.net/1721.1/84636 | |
dc.description.abstract | Identifying interesting relationships between pairs of variables in large data sets is increasingly important. Here, we present a measure of dependence for two-variable relationships: the maximal information coefficient (MIC). MIC captures a wide range of associations both functional and not, and for functional relationships provides a score that roughly equals the coefficient of determination (R[superscript 2]) of the data relative to the regression function. MIC belongs to a larger class of maximal information-based nonparametric exploration (MINE) statistics for identifying and classifying relationships. We apply MIC and MINE to data sets in global health, gene expression, major-league baseball, and the human gut microbiota and identify known and novel relationships. | en_US |
dc.description.sponsorship | National Institute of General Medical Sciences (U.S.) (Medical Scientist Training Program) | en_US |
dc.language.iso | en_US | |
dc.publisher | American Association for the Advancement of Science (AAAS) | en_US |
dc.relation.isversionof | http://dx.doi.org/10.1126/science.1205438 | en_US |
dc.rights | Creative Commons Attribution-Noncommercial-Share Alike 3.0 | en_US |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/3.0/ | en_US |
dc.source | PMC | en_US |
dc.title | Detecting Novel Associations in Large Data Sets | en_US |
dc.type | Article | en_US |
dc.identifier.citation | Reshef, D. N., Y. A. Reshef, H. K. Finucane, S. R. Grossman, G. McVean, P. J. Turnbaugh, E. S. Lander, M. Mitzenmacher, and P. C. Sabeti. “Detecting Novel Associations in Large Data Sets.” Science 334, no. 6062 (December 15, 2011): 1518-1524. | en_US |
dc.contributor.department | Whitaker College of Health Sciences and Technology | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Biology | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science | en_US |
dc.contributor.mitauthor | Reshef, David N. | en_US |
dc.contributor.mitauthor | Reshef, Yakir | en_US |
dc.contributor.mitauthor | Grossman, Sharon Rachel | en_US |
dc.contributor.mitauthor | Lander, Eric S. | en_US |
dc.relation.journal | Science | en_US |
dc.eprint.version | Author's final manuscript | en_US |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | en_US |
eprint.status | http://purl.org/eprint/status/PeerReviewed | en_US |
dspace.orderedauthors | Reshef, D. N.; Reshef, Y. A.; Finucane, H. K.; Grossman, S. R.; McVean, G.; Turnbaugh, P. J.; Lander, E. S.; Mitzenmacher, M.; Sabeti, P. C. | en_US |
dc.identifier.orcid | https://orcid.org/0000-0001-6463-4203 | |
dc.identifier.orcid | https://orcid.org/0000-0001-5410-7274 | |
dc.identifier.orcid | https://orcid.org/0000-0002-3355-6983 | |
mit.license | OPEN_ACCESS_POLICY | en_US |
mit.metadata.status | Complete | |