Show simple item record

dc.contributor.authorReshef, David N.
dc.contributor.authorReshef, Yakir
dc.contributor.authorGrossman, Sharon Rachel
dc.contributor.authorFinucane, Hilary Kiyo
dc.contributor.authorMcVean, Gilean
dc.contributor.authorTurnbaugh, Peter J.
dc.contributor.authorMitzenmacher, Michael
dc.contributor.authorSabeti, Pardis C.
dc.contributor.authorLander, Eric Steven
dc.date.accessioned2014-02-03T13:18:52Z
dc.date.available2014-02-03T13:18:52Z
dc.date.issued2011-12
dc.date.submitted2011-03
dc.identifier.issn0036-8075
dc.identifier.issn1095-9203
dc.identifier.urihttp://hdl.handle.net/1721.1/84636
dc.description.abstractIdentifying interesting relationships between pairs of variables in large data sets is increasingly important. Here, we present a measure of dependence for two-variable relationships: the maximal information coefficient (MIC). MIC captures a wide range of associations both functional and not, and for functional relationships provides a score that roughly equals the coefficient of determination (R[superscript 2]) of the data relative to the regression function. MIC belongs to a larger class of maximal information-based nonparametric exploration (MINE) statistics for identifying and classifying relationships. We apply MIC and MINE to data sets in global health, gene expression, major-league baseball, and the human gut microbiota and identify known and novel relationships.en_US
dc.description.sponsorshipNational Institute of General Medical Sciences (U.S.) (Medical Scientist Training Program)en_US
dc.language.isoen_US
dc.publisherAmerican Association for the Advancement of Science (AAAS)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1126/science.1205438en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alike 3.0en_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/en_US
dc.sourcePMCen_US
dc.titleDetecting Novel Associations in Large Data Setsen_US
dc.typeArticleen_US
dc.identifier.citationReshef, D. N., Y. A. Reshef, H. K. Finucane, S. R. Grossman, G. McVean, P. J. Turnbaugh, E. S. Lander, M. Mitzenmacher, and P. C. Sabeti. “Detecting Novel Associations in Large Data Sets.” Science 334, no. 6062 (December 15, 2011): 1518-1524.en_US
dc.contributor.departmentWhitaker College of Health Sciences and Technologyen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Biologyen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.mitauthorReshef, David N.en_US
dc.contributor.mitauthorReshef, Yakiren_US
dc.contributor.mitauthorGrossman, Sharon Rachelen_US
dc.contributor.mitauthorLander, Eric S.en_US
dc.relation.journalScienceen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsReshef, D. N.; Reshef, Y. A.; Finucane, H. K.; Grossman, S. R.; McVean, G.; Turnbaugh, P. J.; Lander, E. S.; Mitzenmacher, M.; Sabeti, P. C.en_US
dc.identifier.orcidhttps://orcid.org/0000-0001-6463-4203
dc.identifier.orcidhttps://orcid.org/0000-0001-5410-7274
dc.identifier.orcidhttps://orcid.org/0000-0002-3355-6983
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record