MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Noise to lubricate qubit transfer in a spin network

Author(s)
Rafiee, Morteza; Lupo, Cosmo; Mancini, Stefano
Thumbnail
DownloadRafiee-2013-Noise to lubricate.pdf (834.9Kb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
We consider quantum state transfer in a fully connected spin network, in which the results indicate that it is impossible to achieve high fidelity by free dynamics. However, the addition of certain kinds of noise can be helpful for this purpose. In fact, we introduce a model of Gaussian white noise affecting the spin-spin couplings (edges), except those linked to the input and output node, and prove that it enhances the fidelity of state transfer. The observed noise benefit is scale free as it applies to a quantum network of any size. The amount of the fidelity enhancement, depending on the noise strength as well as on the number of edges to which it is applied, can be so high as to take the fidelity close to one.
Date issued
2013-09
URI
http://hdl.handle.net/1721.1/84648
Department
Massachusetts Institute of Technology. Research Laboratory of Electronics
Journal
Physical Review A
Publisher
American Physical Society
Citation
Rafiee, Morteza, Cosmo Lupo, and Stefano Mancini. “Noise to lubricate qubit transfer in a spin network.” Physical Review A 88, no. 3 (September 2013). © 2013 American Physical Society
Version: Final published version
ISSN
1050-2947
1094-1622

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.