MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Synergetic Fluid Mixing from Viscous Fingering and Alternating Injection

Author(s)
Jha, Birendra; Cueto-Felgueroso, Luis; Juanes, Ruben
Thumbnail
DownloadJha-2013-Synergetic fluid mixing.pdf (1.115Mb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
We study mixing of two fluids of different viscosity in a microfluidic channel or porous medium. We show that the synergetic action of alternating injection and viscous fingering leads to a dramatic increase in mixing efficiency at high Péclet numbers. Based on observations from high-resolution simulations, we develop a theoretical model of mixing efficiency that combines a hyperbolic mixing model of the channelized region ahead and a mixing-dissipation model of the pseudosteady region behind. Our macroscopic model quantitatively reproduces the evolution of the average degree of mixing along the flow direction and can be used as a design tool to optimize mixing from viscous fingering in a microfluidic channel.
Date issued
2013-10
URI
http://hdl.handle.net/1721.1/84969
Department
Massachusetts Institute of Technology. Department of Civil and Environmental Engineering
Journal
Physical Review Letters
Publisher
American Physical Society
Citation
Jha, Birendra, Luis Cueto-Felgueroso, and Ruben Juanes. “Synergetic Fluid Mixing from Viscous Fingering and Alternating Injection.” Physical Review Letters 111, no. 14 (October 2013). © 2013 American Physical Society
Version: Final published version
ISSN
0031-9007
1079-7114

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.