Direct probe of spectral inhomogeneity reveals synthetic tunability of single-nanocrystal spectral linewidths
Author(s)
Cui, Jian; Marshall, Lisa F.; Chen, Ou; Brokmann, Xavier; Bawendi, Moungi G.; Beyler, Andrew Paul; Harris, Daniel Kelly; Wanger, Darcy Deborah; ... Show more Show less
DownloadBawendi_Direct probe with SI.pdf (3.379Mb)
PUBLISHER_POLICY
Publisher Policy
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Terms of use
Metadata
Show full item recordAbstract
The spectral linewidth of an ensemble of fluorescent emitters is dictated by the combination of single-emitter linewidths and sample inhomogeneity. For semiconductor nanocrystals, efforts to tune ensemble linewidths for optical applications have focused primarily on eliminating sample inhomogeneities, because conventional single-molecule methods cannot reliably build accurate ensemble-level statistics for single-particle linewidths. Photon-correlation Fourier spectroscopy in solution (S-PCFS) offers a unique approach to investigating single-nanocrystal spectra with large sample statistics and high signal-to-noise ratios, without user selection bias and at fast timescales. With S-PCFS, we directly and quantitatively deconstruct the ensemble linewidth into contributions from the average single-particle linewidth and from sample inhomogeneity. We demonstrate that single-particle linewidths vary significantly from batch to batch and can be synthetically controlled. These findings delineate the synthetic challenges facing underdeveloped nanomaterials such as InP and InAs core–shell particles and introduce new avenues for the synthetic optimization of fluorescent nanoparticles.
Date issued
2013-06Department
Massachusetts Institute of Technology. Department of Chemistry; Massachusetts Institute of Technology. Department of Materials Science and EngineeringJournal
Nature Chemistry
Publisher
Nature Publishing Group
Citation
Cui, Jian, Andrew P. Beyler, Lisa F. Marshall, Ou Chen, Daniel K. Harris, Darcy D. Wanger, Xavier Brokmann, and Moungi G. Bawendi. “Direct probe of spectral inhomogeneity reveals synthetic tunability of single-nanocrystal spectral linewidths.” Nature Chemistry 5, no. 7 (June 2, 2013): 602-606.
Version: Author's final manuscript
ISSN
1755-4330
1755-4349