Deciphering molecular circuits from genetic variation underlying transcriptional responsiveness to stimuli
Author(s)
Gat-Viks, Irit; Chevrier, Nicolas; Wilentzik, Roni; Eisenhaure, Thomas; Raychowdhury, Raktima; Steuerman, Yael; Shalek, Alex K.; Hacohen, Nir; Amit, Ido; Regev, Aviv; ... Show more Show less
DownloadRegev_Deciphering molecular.pdf (3.122Mb)
OPEN_ACCESS_POLICY
Open Access Policy
Creative Commons Attribution-Noncommercial-Share Alike
Terms of use
Metadata
Show full item recordAbstract
Individual genetic variation affects gene responsiveness to stimuli, often by influencing complex molecular circuits. Here we combine genomic and intermediate-scale transcriptional profiling with computational methods to identify variants that affect the responsiveness of genes to stimuli (responsiveness quantitative trait loci or reQTLs) and to position these variants in molecular circuit diagrams. We apply this approach to study variation in transcriptional responsiveness to pathogen components in dendritic cells from recombinant inbred mouse strains. We identify reQTLs that correlate with particular stimuli and position them in known pathways. For example, in response to a virus-like stimulus, a trans-acting variant responds as an activator of the antiviral response; using RNA interference, we identify Rgs16 as the likely causal gene. Our approach charts an experimental and analytic path to decipher the mechanisms underlying genetic variation in circuits that control responses to stimuli.
Date issued
2013-03Department
Massachusetts Institute of Technology. Department of BiologyJournal
Nature Biotechnology
Publisher
Nature Publishing Group
Citation
Gat-Viks, Irit, Nicolas Chevrier, Roni Wilentzik, Thomas Eisenhaure, Raktima Raychowdhury, Yael Steuerman, Alex K Shalek, Nir Hacohen, Ido Amit, and Aviv Regev. “Deciphering molecular circuits from genetic variation underlying transcriptional responsiveness to stimuli.” Nature Biotechnology 31, no. 4 (March 17, 2013): 342-349.
Version: Author's final manuscript
ISSN
1087-0156
1546-1696