MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Condensation heat transfer on superhydrophobic surfaces

Author(s)
Miljkovic, Nenad; Wang, Evelyn N.
Thumbnail
DownloadMain article, figures, and supplementary information (1.697Mb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
Condensation is a phase change phenomenon often encountered in nature, as well as used in industry for applications including power generation, thermal management, desalination, and environmental control. For the past eight decades, researchers have focused on creating surfaces allowing condensed droplets to be easily removed by gravity for enhanced heat transfer performance. Recent advancements in nanofabrication have enabled increased control of surface structuring for the development of superhydrophobic surfaces with even higher droplet mobility and, in some cases, coalescence-induced droplet jumping. Here, we provide a review of new insights gained to tailor superhydrophobic surfaces for enhanced condensation heat transfer considering the role of surface structure, nucleation density, droplet morphology, and droplet dynamics. Furthermore, we identify challenges and new opportunities to advance these surfaces for broad implementation in thermofluidic systems.
Date issued
2013-05
URI
http://hdl.handle.net/1721.1/85002
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Journal
MRS Bulletin
Publisher
Cambridge University Press (Materials Research Society)
Citation
Miljkovic, Nenad, and Evelyn N. Wang. “Condensation heat transfer on superhydrophobic surfaces.” MRS Bulletin 38, no. 05 (May 15, 2013): 397-406.
Version: Author's final manuscript
ISSN
0883-7694
1938-1425

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.