Show simple item record

dc.contributor.authorMiljkovic, Nenad
dc.contributor.authorEnright, Ryan
dc.contributor.authorNam, Youngsuk
dc.contributor.authorLopez, Ken
dc.contributor.authorDou, Nicholas G.
dc.contributor.authorSack, Jean H.
dc.contributor.authorWang, Evelyn N.
dc.date.accessioned2014-02-26T16:50:27Z
dc.date.available2014-02-26T16:50:27Z
dc.date.issued2012-11
dc.date.submitted2012-11
dc.identifier.issn1530-6984
dc.identifier.issn1530-6992
dc.identifier.urihttp://hdl.handle.net/1721.1/85094
dc.description.abstractWhen droplets coalesce on a superhydrophobic nanostructured surface, the resulting droplet can jump from the surface due to the release of excess surface energy. If designed properly, these superhydrophobic nanostructured surfaces can not only allow for easy droplet removal at micrometric length scales during condensation but also promise to enhance heat transfer performance. However, the rationale for the design of an ideal nanostructured surface as well as heat transfer experiments demonstrating the advantage of this jumping behavior are lacking. Here, we show that silanized copper oxide surfaces created via a simple fabrication method can achieve highly efficient jumping-droplet condensation heat transfer. We experimentally demonstrated a 25% higher overall heat flux and 30% higher condensation heat transfer coefficient compared to state-of-the-art hydrophobic condensing surfaces at low supersaturations (<1.12). This work not only shows significant condensation heat transfer enhancement but also promises a low cost and scalable approach to increase efficiency for applications such as atmospheric water harvesting and dehumidification. Furthermore, the results offer insights and an avenue to achieve high flux superhydrophobic condensation.en_US
dc.description.sponsorshipUnited States. Dept. of Energy (Office of Basic Energy Sciences)en_US
dc.description.sponsorshipSolid-State Solar-Thermal Energy Conversion Centeren_US
dc.description.sponsorshipNational Science Foundation (U.S.) (NSF award no. ECS-033576)en_US
dc.description.sponsorshipIrish Research Council for the Humanities and Social Sciencesen_US
dc.description.sponsorshipNational Research Foundation of Koreaen_US
dc.description.sponsorshipKorea (South). Ministry of Education, Science and Technology (No. 2012R1A1A1014845)en_US
dc.language.isoen_US
dc.publisherAmerican Chemical Societyen_US
dc.relation.isversionofhttp://dx.doi.org/10.1021/nl303835den_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceNenad Miljkovicen_US
dc.titleJumping-Droplet-Enhanced Condensation on Scalable Superhydrophobic Nanostructured Surfacesen_US
dc.typeArticleen_US
dc.identifier.citationMiljkovic, Nenad, Ryan Enright, Youngsuk Nam, Ken Lopez, Nicholas Dou, Jean Sack, and Evelyn N. Wang. "Jumping-Droplet-Enhanced Condensation on Scalable Superhydrophobic Nanostructured Surfaces." Nano Letters 2013 13 (1), 179-187.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineeringen_US
dc.contributor.approverMiljkovic, Nenaden_US
dc.contributor.mitauthorMiljkovic, Nenaden_US
dc.contributor.mitauthorEnright, Ryanen_US
dc.contributor.mitauthorNam, Youngsuken_US
dc.contributor.mitauthorLopez, Kenen_US
dc.contributor.mitauthorDou, Nicholas G.en_US
dc.contributor.mitauthorSack, Jean H.en_US
dc.contributor.mitauthorWang, Evelyn N.en_US
dc.relation.journalNano Lettersen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsMiljkovic, Nenad; Enright, Ryan; Nam, Youngsuk; Lopez, Ken; Dou, Nicholas Sack, Jean H.; Wang, Evelyn N.en_US
dc.identifier.orcidhttps://orcid.org/0000-0001-7045-1200
dspace.mitauthor.errortrue
mit.licensePUBLISHER_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record