MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Systemic Elevation of PTEN Induces a Tumor-Suppressive Metabolic State

Author(s)
Garcia-Cao, Isabel; Song, Min Sup; Hobbs, Robin M.; Laurent, Gaelle; Giorgi, Carlotta; de Boer, Vincent C. J.; Anastasiou, Dimitrios; Ito, Keisuke; Sasaki, Atsuo T.; Rameh, Lucia; Carracedo, Arkaitz; Vander Heiden, Matthew G.; Cantley, Lewis C.; Pinton, Paolo; Haigis, Marcia C.; Pandolfi, Pier Paolo; Vander Heiden, Matthew G.; ... Show more Show less
Thumbnail
DownloadVander Heiden_Systemic elevation.pdf (1.872Mb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
Decremental loss of PTEN results in cancer susceptibility and tumor progression. PTEN elevation might therefore be an attractive option for cancer prevention and therapy. We have generated several transgenic mouse lines with PTEN expression elevated to varying levels by taking advantage of bacterial artificial chromosome (BAC)-mediated transgenesis. The “Super-PTEN” mutants are viable and show reduced body size due to decreased cell number, with no effect on cell size. Unexpectedly, PTEN elevation at the organism level results in healthy metabolism characterized by increased energy expenditure and reduced body fat accumulation. Cells derived from these mice show reduced glucose and glutamine uptake and increased mitochondrial oxidative phosphorylation and are resistant to oncogenic transformation. Mechanistically we find that PTEN elevation orchestrates this metabolic switch by regulating PI3K-dependent and -independent pathways and negatively impacting two of the most pronounced metabolic features of tumor cells: glutaminolysis and the Warburg effect.
Date issued
2012-03
URI
http://hdl.handle.net/1721.1/85109
Department
Massachusetts Institute of Technology. Department of Biology; Koch Institute for Integrative Cancer Research at MIT
Journal
Cell
Publisher
Elsevier B.V.
Citation
Garcia-Cao, Isabel, Min Sup Song, Robin M. Hobbs, Gaelle Laurent, Carlotta Giorgi, Vincent C.J. de Boer, Dimitrios Anastasiou, Keisuke Ito, Atsuo T. Sasaki, Lucia Rameh, Arkaitz Carracedo, Matthew G. Vander Heiden, Lewis C. Cantley, Paolo Pinton, Marcia C. Haigis, Pier Paolo Pandolfi. "Systemic Elevation of PTEN Induces a Tumor-Suppressive Metabolic State." Cell, 149.1 (2012): 49-62.© 2012 Elsevier Inc.
Version: Final published version
ISSN
00928674

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.