MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

NMR Structure and Dynamics of the C-Terminal Domain from Human Rev1 and Its Complex with Rev1 Interacting Region of DNA Polymerase η

Author(s)
Pozhidaeva, Alexandra; Pustovalova, Yulia; Bezsonova, Irina; Walker, Graham C.; Korzhnev, Dmitry M.; D'Souza, Sanjay Victor; ... Show more Show less
Thumbnail
DownloadWalker_NMR structure.pdf (2.364Mb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
Rev1 is a translesion synthesis (TLS) DNA polymerase essential for DNA damage tolerance in eukaryotes. In the process of TLS stalled high-fidelity replicative DNA polymerases are temporarily replaced by specialized TLS enzymes that can bypass sites of DNA damage (lesions), thus allowing replication to continue or postreplicational gaps to be filled. Despite its limited catalytic activity, human Rev1 plays a key role in TLS by serving as a scaffold that provides an access of Y-family TLS polymerases polη, ι, and κ to their cognate DNA lesions and facilitates their subsequent exchange to polζ that extends the distorted DNA primer–template. Rev1 interaction with the other major human TLS polymerases, polη, ι, κ, and the regulatory subunit Rev7 of polζ, is mediated by Rev1 C-terminal domain (Rev1-CT). We used NMR spectroscopy to determine the spatial structure of the Rev1-CT domain (residues 1157–1251) and its complex with Rev1 interacting region (RIR) from polη (residues 524–539). The domain forms a four-helix bundle with a well-structured N-terminal β-hairpin docking against helices 1 and 2, creating a binding pocket for the two conserved Phe residues of the RIR motif that upon binding folds into an α-helix. NMR spin-relaxation and NMR relaxation dispersion measurements suggest that free Rev1-CT and Rev1-CT/polη-RIR complex exhibit μs-ms conformational dynamics encompassing the RIR binding site, which might facilitate selection of the molecular configuration optimal for binding. These results offer new insights into the control of TLS in human cells by providing a structural basis for understanding the recognition of the Rev1-CT by Y-family DNA polymerases.
Date issued
2012-06
URI
http://hdl.handle.net/1721.1/85185
Department
Massachusetts Institute of Technology. Department of Biology
Journal
Biochemistry
Publisher
American Chemical Society (ACS)
Citation
Pozhidaeva, Alexandra, Yulia Pustovalova, Sanjay D’Souza, Irina Bezsonova, Graham C. Walker, and Dmitry M. Korzhnev. “NMR Structure and Dynamics of the C-Terminal Domain from Human Rev1 and Its Complex with Rev1 Interacting Region of DNA Polymerase η.” Biochemistry 51, no. 27 (July 10, 2012): 5506–5520.
Version: Author's final manuscript
ISSN
0006-2960
1520-4995

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.