MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Analytic solution for the morphology of a soil-mantled valley undergoing steady headward growth: Validation using case studies in southeastern Arizona

Author(s)
Pelletier, Jon D.; Perron, J. Taylor
Thumbnail
DownloadPerron_Analytic solution.pdf (2.018Mb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
The geomorphic literature contains many analytic solutions for the topographic evolution of gently sloping soil-mantled hillslopes responding to base level changes. Most of these solutions are limited to vertical base level changes and/or to simplified geometries, however. In this paper we present an analytic solution for the morphology of a valley and its adjacent hillslopes undergoing steady headward growth. The mathematics of this problem were first solved by Ivantsov (1947) in the context of heat flow near a parabolic solidification boundary. Here we test whether the Ivantsov solution provides an accurate first-order prediction of the morphology of valley heads and their adjacent hillslopes by comparing the model predictions to survey data from two study sites in southeastern Arizona. The model predicts that elevation contours of valley heads are parabolas and that topographic transects normal to contour lines are error functions. High-resolution Digital Elevation Models (DEMs) were constructed for the two study sites using Real-Time Kinematic Global Positioning System (RTK-GPS) measurements and a Terrestrial Laser Scanner (TLS). Our analyses show that the model reproduces the first-order morphology of headward-growing valleys and their adjacent hillslopes. We also show that by analyzing hillslope profiles at different distances from the valley head, the model framework can be used to infer likely changes in the valley head migration rate through time.
Date issued
2012-05
URI
http://hdl.handle.net/1721.1/85571
Department
Massachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences
Journal
Journal of Geophysical Research
Publisher
American Geophysical Union (AGU)
Citation
Pelletier, Jon D., and J. Taylor Perron. “Analytic Solution for the Morphology of a Soil-Mantled Valley Undergoing Steady Headward Growth: Validation Using Case Studies in Southeastern Arizona.” Journal of Geophysical Research 117, no. F2 (2012). © 2012 by the American Geophysical Union
Version: Final published version
ISSN
0148-0227
2156-2202

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.