MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Pore-scale modeling of electrical and fluid transport in Berea sandstone

Author(s)
Zhan, Xin; Schwartz, Lawrence M.; Smith, Wave C.; Toksoz, M. Nafi; Morgan, Frank Dale
Thumbnail
DownloadMorgan_Pore-scale.pdf (1.341Mb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
The purpose of this paper is to test how well numerical calculations can predict transport properties of porous permeable rock, given its 3D digital microtomography (μCT) image. For this study, a Berea 500 sandstone sample is used, whose μCT images have been obtained with resolution of 2.8 μm . Porosity, electrical conductivity, permeability, and surface area are calculated from the μCT image and compared with laboratory-measured values. For transport properties (electrical conductivity, permeability), a finite-difference scheme is adopted. The calculated and measured properties compare quite well. Electrical transport in Berea 500 sandstone is complicated by the presence of surface conduction in the electric double layer at the grain-electrolyte boundary. A three-phase conductivity model is proposed to compute surface conduction on the rock μCT image. Effects of image resolution and computation sample size on the accuracy of numerical predictions are also investigated. Reducing resolution (i.e., increasing the voxel dimensions) decreases the calculated values of electrical conductivity and hydraulic permeability. Increasing computation sample volume gives a better match between laboratory measurements and numerical results. Large sample provides a better representation of the rock.
Date issued
2010-09
URI
http://hdl.handle.net/1721.1/85598
Department
Massachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences
Journal
Geophysics
Publisher
Society of Exploration Geophysicists
Citation
Zhan, Xin, Lawrence M. Schwartz, M. Nafi Toksoz, Wave C. Smith, and F. Dale Morgan. “Pore-Scale Modeling of Electrical and Fluid Transport in Berea Sandstone.” GEOPHYSICS 75, no. 5 (September 2010): F135–F142. © 2010 Society of Exploration Geophysicists
Version: Final published version
ISSN
0016-8033
1942-2156

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.