MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Contribution of isotopologue self-shielding to sulfur mass-independent fractionation during sulfur dioxide photolysis

Author(s)
Lyons, J. R.; Ono, Shuhei; Whitehill, Andrew Richard
Thumbnail
DownloadOno_Contribution of.pdf (606.6Kb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
Signatures of sulfur mass-independent fractionation (S-MIF) are observed for sulfur minerals in Archean rocks, and for modern stratospheric sulfate aerosols (SSA) deposited in polar ice. Ultraviolet light photolysis of SO[subscript 2] is thought to be the most likely source for these S-MIF signatures, although several hypotheses have been proposed for the underlying mechanism(s) of S-MIF production. Laboratory SO[subscript 2] photolysis experiments are carried out with a flow-through photochemical reactor with a broadband (Xe arc lamp) light source at 0.1 to 5 mbar SO[subscript 2] in 0.25 to 1 bar N[subscript 2] bath gas, in order to test the effect of SO[subscript 2] pressure on the production of S-MIF. Elemental sulfur products yield high δ[superscript 34]S values up to 140 ‰, with δ[superscript 33]S/δ[superscript 34]S of 0.59 ± 0.04 and Δ[superscript 36]S/Δ[superscript 33]S ratios of −4.6 ± 1.3 with respect to initial SO[subscript 2]. The magnitude of the isotope effect strongly depends on SO[subscript 2] partial pressure, with larger fractionations at higher SO[subscript 2] pressures, but saturates at an SO[subscript 2] column density of 10[superscript 18] molecules cm[superscript −2]. The observed pressure dependence and δ[superscript 33]S/δ[superscript 34]S and Δ[superscript 36]S/Δ[superscript 33]S ratios are consistent with model calculations based on synthesized SO[subscript 2] isotopologue cross sections, suggesting a significant contribution of isotopologue self-shielding to S-MIF for high SO[subscript 2] pressure (>0.1 mbar) experiments. Results of dual-cell experiments further support this conclusion. The measured isotopic patterns, in particular the Δ[superscript 36]S/Δ[superscript 33]S relationships, closely match those measured for modern SSA from explosive volcanic eruptions. These isotope systematics could be used to trace the chemistry of SSA after large Plinian volcanic eruptions.
Date issued
2013-03
URI
http://hdl.handle.net/1721.1/85603
Department
Massachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences
Journal
Journal of Geophysical Research: Atmospheres
Citation
Ono, S., A. R. Whitehill, and J. R. Lyons. “Contribution of Isotopologue Self-Shielding to Sulfur Mass-Independent Fractionation During Sulfur Dioxide Photolysis.” Journal of Geophysical Research: Atmospheres 118, no. 5 (March 16, 2013): 2444–2454. Copyright © 2013 American Geophysical Union
Version: Final published version
ISSN
2169-8996

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.