Show simple item record

dc.contributor.authorHauck, Steven A.
dc.contributor.authorMargot, Jean-Luc
dc.contributor.authorSolomon, Sean C.
dc.contributor.authorPhillips, Roger J.
dc.contributor.authorJohnson, Catherine L.
dc.contributor.authorLemoine, Frank G.
dc.contributor.authorMazarico, Erwan Matias
dc.contributor.authorMcCoy, Timothy J.
dc.contributor.authorPadovan, Sebastiano
dc.contributor.authorPeale, Stanton J.
dc.contributor.authorPerry, Mark E.
dc.contributor.authorSmith, David Edmund
dc.contributor.authorZuber, Maria
dc.date.accessioned2014-03-14T17:06:37Z
dc.date.available2014-03-14T17:06:37Z
dc.date.issued2013-06
dc.date.submitted2013-02
dc.identifier.issn21699097
dc.identifier.urihttp://hdl.handle.net/1721.1/85633
dc.description.abstractThe recent determination of the gravity field of Mercury and new Earth-based radar observations of the planet's spin state afford the opportunity to explore Mercury's internal structure. These observations provide estimates of two measures of the radial mass distribution of Mercury: the normalized polar moment of inertia and the fractional polar moment of inertia of the solid portion of the planet overlying the liquid core. Employing Monte Carlo techniques, we calculate several million models of the radial density structure of Mercury consistent with its radius and bulk density and constrained by these moment of inertia parameters. We estimate that the top of the liquid core is at a radius of 2020 ± 30 km, the mean density above this boundary is 3380 ± 200 kg m−3, and the density below the boundary is 6980 ± 280 kg m−3. We find that these internal structure parameters are robust across a broad range of compositional models for the core and planet as a whole. Geochemical observations of Mercury's surface by MESSENGER indicate a chemically reducing environment that would favor the partitioning of silicon or both silicon and sulfur into the metallic core during core-mantle differentiation. For a core composed of Fe–S–Si materials, the thermodynamic properties at elevated pressures and temperatures suggest that an FeS-rich layer could form at the top of the core and that a portion of it may be presently solid.en_US
dc.description.sponsorshipUnited States. National Aeronautics and Space Administration (NASA MESSENGER Participating Scientist grant NNX07AR77G)en_US
dc.language.isoen_US
dc.publisherAmerican Geophysical Unionen_US
dc.relation.isversionofhttp://dx.doi.org/10.1002/jgre.20091en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceMIT web domainen_US
dc.titleThe curious case of Mercury's internal structureen_US
dc.typeArticleen_US
dc.identifier.citationHauck, Steven A., Jean-Luc Margot, Sean C. Solomon, Roger J. Phillips, Catherine L. Johnson, Frank G. Lemoine, Erwan Mazarico, et al. “The Curious Case of Mercury’s Internal Structure.” Journal of Geophysical Research: Planets 118, no. 6 (June 2013): 1204–1220.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciencesen_US
dc.contributor.mitauthorMazarico, Erwan Matiasen_US
dc.contributor.mitauthorZuber, Mariaen_US
dc.contributor.mitauthorSmith, David Edmunden_US
dc.relation.journalJournal of Geophysical Research: Planetsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsHauck, Steven A.; Margot, Jean-Luc; Solomon, Sean C.; Phillips, Roger J.; Johnson, Catherine L.; Lemoine, Frank G.; Mazarico, Erwan; McCoy, Timothy J.; Padovan, Sebastiano; Peale, Stanton J.; Perry, Mark E.; Smith, David E.; Zuber, Maria T.en_US
dc.identifier.orcidhttps://orcid.org/0000-0003-2652-8017
dspace.mitauthor.errortrue
mit.licensePUBLISHER_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record