Show simple item record

dc.contributor.authorBilgic, Berkin
dc.contributor.authorSetsompop, Kawin
dc.contributor.authorCohen-Adad, Julien
dc.contributor.authorWedeen, Van
dc.contributor.authorWald, Lawrence
dc.contributor.authorAdalsteinsson, Elfar
dc.date.accessioned2014-03-20T18:38:33Z
dc.date.available2014-03-20T18:38:33Z
dc.date.issued2012
dc.identifier.isbn978-3-642-33453-5
dc.identifier.isbn978-3-642-33454-2
dc.identifier.issn0302-9743
dc.identifier.issn1611-3349
dc.identifier.urihttp://hdl.handle.net/1721.1/85852
dc.description.abstractDiffusion Spectrum Imaging (DSI) offers detailed information on complex distributions of intravoxel fiber orientations at the expense of extremely long imaging times (~1 hour). It is possible to accelerate DSI by sub-Nyquist sampling of the q-space followed by nonlinear reconstruction to estimate the diffusion probability density functions (pdfs). Recent work by Menzel et al. imposed sparsity constraints on the pdfs under wavelet and Total Variation (TV) transforms. As the performance of Compressed Sensing (CS) reconstruction depends strongly on the level of sparsity in the selected transform space, a dictionary specifically tailored for sparse representation of diffusion pdfs can yield higher fidelity results. To our knowledge, this work is the first application of adaptive dictionaries in DSI, whereby we reduce the scan time of whole brain DSI acquisition from 50 to 17 min while retaining high image quality. In vivo experiments were conducted with the novel 3T Connectome MRI, whose strong gradients are particularly suited for DSI. The RMSE from the proposed reconstruction is up to 2 times lower than that of Menzel et al.’s method, and is actually comparable to that of the fully-sampled 50 minute scan. Further, we demonstrate that a dictionary trained using pdfs from a single slice of a particular subject generalizes well to other slices from the same subject, as well as to slices from another subject.en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (NIH R01 EB007942)en_US
dc.description.sponsorshipNational Institute for Biomedical Imaging and Bioengineering (U.S.) (NIBIB K99EB012107)en_US
dc.description.sponsorshipNational Institute for Biomedical Imaging and Bioengineering (U.S.) (NIBIB R01EB006847)en_US
dc.description.sponsorshipNational Institute for Biomedical Imaging and Bioengineering (U.S.) (K99/R00 EB008129)en_US
dc.description.sponsorshipNational Center for Research Resources (U.S.) (NCRR P41RR14075)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (NIH Blueprint for Neuroscience Research U01MH093765)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (The Human Connectome project)en_US
dc.description.sponsorshipSiemens Aktiengesellschaft (Siemens-MIT Alliance)en_US
dc.description.sponsorshipCenter for Integration of Medicine and Innovative Technology (MIT-CIMIT Medical Engineering Fellowship)en_US
dc.language.isoen_US
dc.publisherSpringer-Verlag Berlin Heidelbergen_US
dc.relation.isversionofhttp://dx.doi.org/10.1007/978-3-642-33454-2_1en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcePMCen_US
dc.titleAccelerated Diffusion Spectrum Imaging with Compressed Sensing Using Adaptive Dictionariesen_US
dc.typeArticleen_US
dc.identifier.citationBilgic, Berkin, Kawin Setsompop, Julien Cohen-Adad, Van Wedeen, Lawrence L. Wald, and Elfar Adalsteinsson. “Accelerated Diffusion Spectrum Imaging with Compressed Sensing Using Adaptive Dictionaries.” In: Medical Image Computing and Computer-Assisted Intervention – MICCAI 2012 (Lecture Notes in Computer Science; vol. 7512) (2012): 1–9.en_US
dc.contributor.departmentHarvard University--MIT Division of Health Sciences and Technologyen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.mitauthorBilgic, Berkinen_US
dc.contributor.mitauthorWald, Lawrenceen_US
dc.contributor.mitauthorAdalsteinsson, Elfaren_US
dc.relation.journalMedical Image Computing and Computer-Assisted Intervention – MICCAI 2012en_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dspace.orderedauthorsBilgic, Berkin; Setsompop, Kawin; Cohen-Adad, Julien; Wedeen, Van; Wald, Lawrence L.; Adalsteinsson, Elfaren_US
dc.identifier.orcidhttps://orcid.org/0000-0002-7637-2914
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record