Show simple item record

dc.contributor.authorImai, Kosuke
dc.contributor.authorTingley, Dustin
dc.contributor.authorYamamoto, Teppei
dc.date.accessioned2014-03-21T15:14:11Z
dc.date.available2014-03-21T15:14:11Z
dc.date.issued2012-11
dc.identifier.issn09641998
dc.identifier.issn1467-985X
dc.identifier.urihttp://hdl.handle.net/1721.1/85870
dc.description.abstractExperimentation is a powerful methodology that enables scientists to establish causal claims empirically. However, one important criticism is that experiments merely provide a black box view of causality and fail to identify causal mechanisms. Specifically, critics argue that, although experiments can identify average causal effects, they cannot explain the process through which such effects come about. If true, this represents a serious limitation of experimentation, especially for social and medical science research that strives to identify causal mechanisms. We consider several experimental designs that help to identify average natural indirect effects. Some of these designs require the perfect manipulation of an intermediate variable, whereas others can be used even when only imperfect manipulation is possible. We use recent social science experiments to illustrate the key ideas that underlie each of the designs proposed.en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Grant SES-0849715)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Grant SES-0918968)en_US
dc.language.isoen_US
dc.publisherWiley Blackwellen_US
dc.relation.isversionofhttp://dx.doi.org/10.1111/j.1467-985X.2012.01032.xen_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceYamamoto via Jennifer Greenleafen_US
dc.titleExperimental designs for identifying causal mechanismsen_US
dc.typeArticleen_US
dc.identifier.citationImai, Kosuke, Dustin Tingley, and Teppei Yamamoto. “Experimental Designs for Identifying Causal Mechanisms.” Journal of the Royal Statistical Society: Series A (Statistics in Society) 176, no. 1 (January 2013): 5–51.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Political Scienceen_US
dc.contributor.approverYamamoto, Teppeien_US
dc.contributor.mitauthorYamamoto, Teppeien_US
dc.relation.journalJournal of the Royal Statistical Society: Series A (Statistics in Society)en_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsImai, Kosuke; Tingley, Dustin; Yamamoto, Teppeien_US
dc.identifier.orcidhttps://orcid.org/0000-0002-8079-7675
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record