Show simple item record

dc.contributor.authorWeller, Daniel S.
dc.contributor.authorPolimeni, Jonathan R.
dc.contributor.authorGrady, Leo
dc.contributor.authorWald, Lawrence L.
dc.contributor.authorAdalsteinsson, Elfar
dc.contributor.authorGoyal, Vivek K.
dc.date.accessioned2014-03-21T16:02:04Z
dc.date.available2014-03-21T16:02:04Z
dc.date.issued2013-06
dc.date.submitted2013-03
dc.identifier.issn0278-0062
dc.identifier.issn1558-254X
dc.identifier.urihttp://hdl.handle.net/1721.1/85875
dc.description.abstractThe amount of calibration data needed to produce images of adequate quality can prevent auto-calibrating parallel imaging reconstruction methods like generalized autocalibrating partially parallel acquisitions (GRAPPA) from achieving a high total acceleration factor. To improve the quality of calibration when the number of auto-calibration signal (ACS) lines is restricted, we propose a sparsity-promoting regularized calibration method that finds a GRAPPA kernel consistent with the ACS fit equations that yields jointly sparse reconstructed coil channel images. Several experiments evaluate the performance of the proposed method relative to unregularized and existing regularized calibration methods for both low-quality and underdetermined fits from the ACS lines. These experiments demonstrate that the proposed method, like other regularization methods, is capable of mitigating noise amplification, and in addition, the proposed method is particularly effective at minimizing coherent aliasing artifacts caused by poor kernel calibration in real data. Using the proposed method, we can increase the total achievable acceleration while reducing degradation of the reconstructed image better than existing regularized calibration methods.en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (CAREER Grant 0643836)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (Grant NIH R01 EB007942)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (Grant NIH R01 EB006847)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (Grant NIH P41 RR014075)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (Grant NIH K01 EB011498)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (Grant NIH F32 EB015914)en_US
dc.description.sponsorshipNational Science Foundation (U.S.). Graduate Research Fellowship Programen_US
dc.language.isoen_US
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1109/TMI.2013.2256923en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcePMCen_US
dc.titleSparsity-Promoting Calibration for GRAPPA Accelerated Parallel MRI Reconstructionen_US
dc.typeArticleen_US
dc.identifier.citationWeller, Daniel S., Jonathan R. Polimeni, Leo Grady, Lawrence L. Wald, Elfar Adalsteinsson, and Vivek K. Goyal. “Sparsity-Promoting Calibration for GRAPPA Accelerated Parallel MRI Reconstruction.” IEEE Trans. Med. Imaging 32, no. 7 (n.d.): 1325–1335.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.departmentMassachusetts Institute of Technology. Research Laboratory of Electronicsen_US
dc.contributor.mitauthorAdalsteinsson, Elfaren_US
dc.contributor.mitauthorGoyal, Vivek K.en_US
dc.relation.journalIEEE Transactions on Medical Imagingen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dspace.orderedauthorsWeller, Daniel S.; Polimeni, Jonathan R.; Grady, Leo; Wald, Lawrence L.; Adalsteinsson, Elfar; Goyal, Vivek K.en_US
dc.identifier.orcidhttps://orcid.org/0000-0002-7637-2914
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record