Show simple item record

dc.contributor.authorWeller, Daniel S.
dc.contributor.authorPolimeni, Jonathan R.
dc.contributor.authorGrady, Leo
dc.contributor.authorWald, Lawrence L.
dc.contributor.authorAdalsteinsson, Elfar
dc.contributor.authorGoyal, Vivek K.
dc.date.accessioned2014-03-21T16:22:54Z
dc.date.available2014-03-21T16:22:54Z
dc.date.issued2011-12
dc.date.submitted2011-11
dc.identifier.issn07403194
dc.identifier.issn1522-2594
dc.identifier.urihttp://hdl.handle.net/1721.1/85877
dc.description.abstractTo accelerate magnetic resonance imaging using uniformly undersampled (nonrandom) parallel imaging beyond what is achievable with generalized autocalibrating partially parallel acquisitions (GRAPPA) alone, the DEnoising of Sparse Images from GRAPPA using the Nullspace method is developed. The trade-off between denoising and smoothing the GRAPPA solution is studied for different levels of acceleration. Several brain images reconstructed from uniformly undersampled k-space data using DEnoising of Sparse Images from GRAPPA using the Nullspace method are compared against reconstructions using existing methods in terms of difference images (a qualitative measure), peak-signal-to-noise ratio, and noise amplification (g-factors) as measured using the pseudo-multiple replica method. Effects of smoothing, including contrast loss, are studied in synthetic phantom data. In the experiments presented, the contrast loss and spatial resolution are competitive with existing methods. Results for several brain images demonstrate significant improvements over GRAPPA at high acceleration factors in denoising performance with limited blurring or smoothing artifacts. In addition, the measured g-factors suggest that DEnoising of Sparse Images from GRAPPA using the Nullspace method mitigates noise amplification better than both GRAPPA and L1 iterative self-consistent parallel imaging reconstruction (the latter limited here by uniform undersampling).en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (CAREER Grant 0643836)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (Grant NIH R01 EB007942)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (Grant NIH R01 EB006847)en_US
dc.description.sponsorshipNational Center for Research Resources (U.S.) (Grant P41 RR014075)en_US
dc.description.sponsorshipSiemens Corporationen_US
dc.description.sponsorshipNational Science Foundation (U.S.). Graduate Research Fellowship Programen_US
dc.language.isoen_US
dc.publisherWiley Blackwellen_US
dc.relation.isversionofhttp://dx.doi.org/10.1002/mrm.24116en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcePMCen_US
dc.titleDenoising sparse images from GRAPPA using the nullspace method (DESIGN)en_US
dc.title.alternativeDenoising sparse images from GRAPPA using the nullspace methoden_US
dc.typeArticleen_US
dc.identifier.citationWeller, Daniel S., Jonathan R. Polimeni, Leo Grady, Lawrence L. Wald, Elfar Adalsteinsson, and Vivek K. Goyal. “Denoising Sparse Images from GRAPPA Using the Nullspace Method.” Magnetic Resonance Medicine 68, no. 4 (October 2012): 1176–1189.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.departmentMassachusetts Institute of Technology. Research Laboratory of Electronicsen_US
dc.contributor.mitauthorWeller, Daniel S.en_US
dc.contributor.mitauthorAdalsteinsson, Elfaren_US
dc.contributor.mitauthorGoyal, Vivek K.en_US
dc.relation.journalMagnetic Resonance in Medicineen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsWeller, Daniel S.; Polimeni, Jonathan R.; Grady, Leo; Wald, Lawrence L.; Adalsteinsson, Elfar; Goyal, Vivek K.en_US
dc.identifier.orcidhttps://orcid.org/0000-0002-7637-2914
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record