Show simple item record

dc.contributor.authorLee, Joonsung
dc.contributor.authorGebhardt, Matthias
dc.contributor.authorAdalsteinsson, Elfar
dc.contributor.authorWald, Lawrence
dc.date.accessioned2014-03-21T16:33:43Z
dc.date.available2014-03-21T16:33:43Z
dc.date.issued2011-11
dc.date.submitted2011-06
dc.identifier.issn07403194
dc.identifier.issn1522-2594
dc.identifier.urihttp://hdl.handle.net/1721.1/85878
dc.description.abstractThe management of local and global power deposition in human subjects (specific absorption rate, SAR) is a fundamental constraint to the application of parallel transmission (pTx) systems. Even though the pTx and single channel have to meet the same SAR requirements, the complex behavior of the spatial distribution of local SAR for transmission arrays poses problems that are not encountered in conventional single-channel systems and places additional requirements on pTx radio frequency pulse design. We propose a pTx pulse design method which builds on recent work to capture the spatial distribution of local SAR in numerical tissue models in a compressed parameterization in order to incorporate local SAR constraints within computation times that accommodate pTx pulse design during an in vivo magnetic resonance imaging scan. Additionally, the algorithm yields a protocol-specific ultimate peak in local SAR, which is shown to bound the achievable peak local SAR for a given excitation profile fidelity. The performance of the approach was demonstrated using a numerical human head model and a 7 Tesla eight-channel transmit array. The method reduced peak local 10 g SAR by 14–66% for slice-selective pTx excitations and 2D selective pTx excitations compared to a pTx pulse design constrained only by global SAR. The primary tradeoff incurred for reducing peak local SAR was an increase in global SAR, up to 34% for the evaluated examples, which is favorable in cases where local SAR constraints dominate the pulse applications.en_US
dc.description.sponsorshipSiemens Corporationen_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (Grant NIH R01EB006847)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (Grant NIH R01EB007942)en_US
dc.description.sponsorshipNational Center for Research Resources (U.S.) (Grant P41RR14075)en_US
dc.description.sponsorshipSiemens-MIT Allianceen_US
dc.language.isoen_US
dc.publisherWiley Blackwellen_US
dc.relation.isversionofhttp://dx.doi.org/10.1002/mrm.23140en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcePMCen_US
dc.titleLocal SAR in parallel transmission pulse designen_US
dc.typeArticleen_US
dc.identifier.citationLee, Joonsung, Matthias Gebhardt, Lawrence L. Wald, and Elfar Adalsteinsson. “Local SAR in Parallel Transmission Pulse Design.” Magnetic Resonance Medicine 67, no. 6 (June 2012): 1566–1578.en_US
dc.contributor.departmentHarvard University--MIT Division of Health Sciences and Technologyen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.mitauthorLee, Joonsungen_US
dc.contributor.mitauthorWald, Lawrenceen_US
dc.contributor.mitauthorAdalsteinsson, Elfaren_US
dc.relation.journalMagnetic Resonance in Medicineen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsLee, Joonsung; Gebhardt, Matthias; Wald, Lawrence L.; Adalsteinsson, Elfaren_US
dc.identifier.orcidhttps://orcid.org/0000-0002-7637-2914
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record