Show simple item record

dc.contributor.authorYankowitz, M.
dc.contributor.authorLeRoy, Brian J.
dc.contributor.authorWatanabe, K.
dc.contributor.authorTaniguchi, T.
dc.contributor.authorMoon, P.
dc.contributor.authorKoshino, M.
dc.contributor.authorHunt, Benjamin Matthew
dc.contributor.authorSanchez, Javier Daniel
dc.contributor.authorYoung, Andrea Franchini
dc.contributor.authorJarillo-Herrero, Pablo
dc.contributor.authorAshoori, Raymond
dc.date.accessioned2014-03-21T17:16:56Z
dc.date.available2014-03-21T17:16:56Z
dc.date.issued2013-05
dc.date.submitted2013-03
dc.identifier.issn0036-8075
dc.identifier.issn1095-9203
dc.identifier.urihttp://hdl.handle.net/1721.1/85880
dc.description.abstractvan der Waals heterostructures constitute a new class of artificial materials formed by stacking atomically thin planar crystals. We demonstrated band structure engineering in a van der Waals heterostructure composed of a monolayer graphene flake coupled to a rotationally aligned hexagonal boron nitride substrate. The spatially varying interlayer atomic registry results in both a local breaking of the carbon sublattice symmetry and a long-range moiré superlattice potential in the graphene. In our samples, this interplay between short- and long-wavelength effects resulted in a band structure described by isolated superlattice minibands and an unexpectedly large band gap at charge neutrality. This picture is confirmed by our observation of fractional quantum Hall states at ±5/3 filling and features associated with the Hofstadter butterfly at ultrahigh magnetic fields.en_US
dc.description.sponsorshipUnited States. Dept. of Energy. Office of Basic Energy Sciences (Contract FG02-08ER46514)en_US
dc.description.sponsorshipGordon and Betty Moore Foundation (Grant GBMF2931)en_US
dc.description.sponsorshipUnited States. Dept. of Energy. Office of Basic Energy Sciences (Division of Materials Science and Engineering Grant DE-SC0001819)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Career Award DMR-0845287)en_US
dc.description.sponsorshipUnited States. Office of Naval Research. Multidisciplinary University Research Initiative. Graphene Approaches to Terahertz Electronicsen_US
dc.language.isoen_US
dc.publisherAmerican Association for the Advancement of Science (AAAS)en_US
dc.relation.isversionofhttps://www.sciencemag.org/content/340/6139/1427en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleMassive Dirac Fermions and Hofstadter Butterfly in a van der Waals Heterostructureen_US
dc.typeArticleen_US
dc.identifier.citationHunt, B., J. D. Sanchez-Yamagishi, A. F. Young, M. Yankowitz, B. J. LeRoy, K. Watanabe, T. Taniguchi, et al. “Massive Dirac Fermions and Hofstadter Butterfly in a van Der Waals Heterostructure.” Science 340, no. 6139 (June 21, 2013): 1427–1430.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Physicsen_US
dc.contributor.mitauthorHunt, Benjamin Matthewen_US
dc.contributor.mitauthorSanchez, Javier Danielen_US
dc.contributor.mitauthorYoung, Andrea Franchinien_US
dc.contributor.mitauthorJarillo-Herrero, Pabloen_US
dc.contributor.mitauthorAshoori, Raymonden_US
dc.relation.journalScienceen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsHunt, B.; Sanchez-Yamagishi, J. D.; Young, A. F.; Yankowitz, M.; LeRoy, B. J.; Watanabe, K.; Taniguchi, T.; Moon, P.; Koshino, M.; Jarillo-Herrero, P.; Ashoori, R. C.en_US
dc.identifier.orcidhttps://orcid.org/0000-0001-9703-6525
dc.identifier.orcidhttps://orcid.org/0000-0001-8217-8213
dc.identifier.orcidhttps://orcid.org/0000-0001-5031-1673
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record