MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

TOWARD THE MINIMUM INNER EDGE DISTANCE OF THE HABITABLE ZONE

Author(s)
Zsom, Andras; Seager, Sara; de Wit, Julien; Stamenkovic, Vlada
Thumbnail
DownloadSeager_Toward the.pdf (881.6Kb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
We explore the minimum distance from a host star where an exoplanet could potentially be habitable in order not to discard close-in rocky exoplanets for follow-up observations. We find that the inner edge of the Habitable Zone for hot desert worlds can be as close as 0.38 AU around a solar-like star, if the greenhouse effect is reduced (~1% relative humidity) and the surface albedo is increased. We consider a wide range of atmospheric and planetary parameters such as the mixing ratios of greenhouse gases (water vapor and CO[subscript 2]), surface albedo, pressure, and gravity. Intermediate surface pressure (~1-10 bars) is necessary to limit water loss and to simultaneously sustain an active water cycle. We additionally find that the water loss timescale is influenced by the atmospheric CO[subscript 2] level, because it indirectly influences the stratospheric water mixing ratio. If the CO[subscript 2] mixing ratio of dry planets at the inner edge is smaller than 10[superscript –4], the water loss timescale is ~1 billion years, which is considered here too short for life to evolve. We also show that the expected transmission spectra of hot desert worlds are similar to an Earth-like planet. Therefore, an instrument designed to identify biosignature gases in an Earth-like atmosphere can also identify similarly abundant gases in the atmospheres of dry planets. Our inner edge limit is closer to the host star than previous estimates. As a consequence, the occurrence rate of potentially habitable planets is larger than previously thought.
Date issued
2013-11
URI
http://hdl.handle.net/1721.1/85891
Department
Massachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences
Journal
The Astrophysical Journal
Publisher
IOP Publishing
Citation
Zsom, Andras, Sara Seager, Julien de Wit, and Vlada Stamenkovic. “TOWARD THE MINIMUM INNER EDGE DISTANCE OF THE HABITABLE ZONE.” The Astrophysical Journal 778, no. 2 (December 1, 2013): 109.
Version: Author's final manuscript
ISSN
0004-637X
1538-4357

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.