MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

On the origin of graben and ridges within and near volcanically buried craters and basins in Mercury's northern plains

Author(s)
Freed, Andrew M.; Blair, David M.; Watters, Thomas R.; Klimczak, Christian; Byrne, Paul K.; Solomon, Sean C.; Zuber, Maria; Melosh, H. Jay; ... Show more Show less
Thumbnail
DownloadZuber_On the origin.pdf (3.091Mb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
Images of Mercury's northern volcanic plains taken by the MESSENGER spacecraft reveal a large number of buried impact craters and basins discernible by wrinkle-ridge rings that overlie their rims. Many of these “ghost” craters and basins contain interior graben of diverse widths and orientations. Here we use finite element models to test a variety of mechanisms for the formation of these graben and ridges. Results show that graben are best explained by cooling of large thicknesses of flood lavas within the craters and basins; conservation of surface area during cooling induces the required extensional stress state. In contrast, the development of wrinkle-ridge rings is best explained as the result of cooling and contraction of Mercury's interior, during which a reduction in Mercury's surface area led to a compressional state of stress. The critical factor in determining where large graben form is the thickness of the youngest cooling unit, the topmost sequence of lavas that cooled coevally. A thicker cooling unit leads to a deeper initiation of normal faulting (wider graben floors). Consistent with observations, the widest graben are predicted to occur where pooled lavas were thickest, and no graben are predicted within generally thinner plains outside of major craters. Observed concentrically oriented graben can be explained by variations in the thickness of the youngest cooling unit. In contrast, none of the basin uplift mechanisms considered, including isostatic response to crater topography, inward flow of the lower crust, or exterior loading by volcanic plains, can account for concentrically oriented graben.
Date issued
2012-12
URI
http://hdl.handle.net/1721.1/85933
Department
Massachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences
Journal
Journal of Geophysical Research: Planets
Publisher
American Geophysical Union
Citation
Freed, Andrew M., David M. Blair, Thomas R. Watters, Christian Klimczak, Paul K. Byrne, Sean C. Solomon, Maria T. Zuber, and H. J. Melosh. “On the Origin of Graben and Ridges Within and Near Volcanically Buried Craters and Basins in Mercury’s Northern Plains.” J. Geophys. Res. 117, no. E12 (December 2012): n/a–n/a.
Version: Final published version
ISSN
01480227

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.