Show simple item record

dc.contributor.authorReusswig, Philip David
dc.contributor.authorCongreve, Daniel Norbert
dc.contributor.authorThompson, Nicholas J.
dc.contributor.authorBaldo, Marc A.
dc.date.accessioned2014-03-28T16:45:13Z
dc.date.available2014-03-28T16:45:13Z
dc.date.issued2012-09
dc.date.submitted2012-08
dc.identifier.issn00036951
dc.identifier.urihttp://hdl.handle.net/1721.1/85957
dc.description.abstractWe demonstrate bilayer organic photovoltaic cells that incorporate a singlet exciton fission sensitizer layer to increase the external quantum efficiency (EQE). This solar cell architecture is realized by pairing the singlet exciton donor layer tris[4-(5-phenylthiophen-2-yl)phenyl]amine (TPTPA) with the singlet exciton fission layer 5,6,11,12-tetraphenylnaphthacene (rubrene). The presence of the rubrene layer at the donor-acceptor interface allows for a singlet generated in TPTPA to undergo singlet exciton fission with a corresponding doubling in the TPTPA EQE from 12.8% to 27.6%. This scheme de-couples singlet exciton fission from photon absorption, exciton diffusion, and charge transport for very high EQE organic photovoltaic cells.en_US
dc.description.sponsorshipUnited States. Dept. of Energy. Office of Basic Energy Sciences (Award DE-SC0001088)en_US
dc.description.sponsorshipNational Science Foundation (U.S.). Graduate Research Fellowship Program (Grant 1122374)en_US
dc.language.isoen_US
dc.publisherAmerican Institute of Physics (AIP)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1063/1.4752445en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceMIT web domainen_US
dc.titleEnhanced external quantum efficiency in an organic photovoltaic cell via singlet fission exciton sensitizeren_US
dc.typeArticleen_US
dc.identifier.citationReusswig, P. D., D. N. Congreve, N. J. Thompson, and M. A. Baldo. “Enhanced External Quantum Efficiency in an Organic Photovoltaic Cell via Singlet Fission Exciton Sensitizer.” Appl. Phys. Lett. 101, no. 11 (2012): 113304. © 2012 American Institute of Physicsen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Materials Science and Engineeringen_US
dc.contributor.mitauthorReusswig, Philip Daviden_US
dc.contributor.mitauthorCongreve, Daniel Norberten_US
dc.contributor.mitauthorThompson, Nicholas J.en_US
dc.contributor.mitauthorBaldo, Marc A.en_US
dc.relation.journalApplied Physics Lettersen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsReusswig, P. D.; Congreve, D. N.; Thompson, N. J.; Baldo, M. A.en_US
dc.identifier.orcidhttps://orcid.org/0000-0002-2914-3561
dc.identifier.orcidhttps://orcid.org/0000-0003-2201-5257
mit.licensePUBLISHER_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record