Show simple item record

dc.contributor.authorXia, Zongqi
dc.contributor.authorSecor, Elizabeth
dc.contributor.authorChibnik, Lori B.
dc.contributor.authorBove, Riley M.
dc.contributor.authorCheng, Suchun
dc.contributor.authorChitnis, Tanuja
dc.contributor.authorCagan, Andrew
dc.contributor.authorGainer, Vivian
dc.contributor.authorChen, Pei
dc.contributor.authorLiao, Katherine P.
dc.contributor.authorShaw, Stanley Y.
dc.contributor.authorAnanthakrishnan, Ashwin N.
dc.contributor.authorSzolovits, Peter
dc.contributor.authorWeiner, Howard L.
dc.contributor.authorKarlson, Elizabeth W.
dc.contributor.authorMurphy, Shawn N.
dc.contributor.authorSavova, Guergana K.
dc.contributor.authorCai, Tianxi
dc.contributor.authorChurchill, Susanne
dc.contributor.authorPlenge, Robert M.
dc.contributor.authorKohane, Isaac
dc.contributor.authorDe Jager, Philip L.
dc.date.accessioned2014-04-03T19:42:09Z
dc.date.available2014-04-03T19:42:09Z
dc.date.issued2013-11
dc.date.submitted2013-05
dc.identifier.issn1932-6203
dc.identifier.urihttp://hdl.handle.net/1721.1/86009
dc.description.abstractObjective: To optimally leverage the scalability and unique features of the electronic health records (EHR) for research that would ultimately improve patient care, we need to accurately identify patients and extract clinically meaningful measures. Using multiple sclerosis (MS) as a proof of principle, we showcased how to leverage routinely collected EHR data to identify patients with a complex neurological disorder and derive an important surrogate measure of disease severity heretofore only available in research settings. Methods: In a cross-sectional observational study, 5,495 MS patients were identified from the EHR systems of two major referral hospitals using an algorithm that includes codified and narrative information extracted using natural language processing. In the subset of patients who receive neurological care at a MS Center where disease measures have been collected, we used routinely collected EHR data to extract two aggregate indicators of MS severity of clinical relevance multiple sclerosis severity score (MSSS) and brain parenchymal fraction (BPF, a measure of whole brain volume). Results: The EHR algorithm that identifies MS patients has an area under the curve of 0.958, 83% sensitivity, 92% positive predictive value, and 89% negative predictive value when a 95% specificity threshold is used. The correlation between EHR-derived and true MSSS has a mean R[superscript 2] = 0.38±0.05, and that between EHR-derived and true BPF has a mean R[superscript 2] = 0.22±0.08. To illustrate its clinical relevance, derived MSSS captures the expected difference in disease severity between relapsing-remitting and progressive MS patients after adjusting for sex, age of symptom onset and disease duration (p = 1.56×10[superscript −12]). Conclusion: Incorporation of sophisticated codified and narrative EHR data accurately identifies MS patients and provides estimation of a well-accepted indicator of MS severity that is widely used in research settings but not part of the routine medical records. Similar approaches could be applied to other complex neurological disorders.en_US
dc.description.sponsorshipNational Institute of General Medical Sciences (U.S.) (NIH U54-LM008748)en_US
dc.language.isoen_US
dc.publisherPublic Library of Scienceen_US
dc.relation.isversionofhttp://dx.doi.org/10.1371/journal.pone.0078927en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_US
dc.sourcePLoSen_US
dc.titleModeling Disease Severity in Multiple Sclerosis Using Electronic Health Recordsen_US
dc.typeArticleen_US
dc.identifier.citationXia, Zongqi, Elizabeth Secor, Lori B. Chibnik, Riley M. Bove, Suchun Cheng, Tanuja Chitnis, Andrew Cagan, et al. “Modeling Disease Severity in Multiple Sclerosis Using Electronic Health Records.” Edited by Wang Zhan. PLoS ONE 8, no. 11 (November 11, 2013): e78927.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.departmentMassachusetts Institute of Technology. Laboratory for Computer Scienceen_US
dc.contributor.mitauthorSzolovits, Peteren_US
dc.relation.journalPLoS ONEen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsXia, Zongqi; Secor, Elizabeth; Chibnik, Lori B.; Bove, Riley M.; Cheng, Suchun; Chitnis, Tanuja; Cagan, Andrew; Gainer, Vivian S.; Chen, Pei J.; Liao, Katherine P.; Shaw, Stanley Y.; Ananthakrishnan, Ashwin N.; Szolovits, Peter; Weiner, Howard L.; Karlson, Elizabeth W.; Murphy, Shawn N.; Savova, Guergana K.; Cai, Tianxi; Churchill, Susanne E.; Plenge, Robert M.; Kohane, Isaac S.; De Jager, Philip L.en_US
dc.identifier.orcidhttps://orcid.org/0000-0001-8411-6403
mit.licensePUBLISHER_CCen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record