MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Computational Prediction of Broadly Neutralizing HIV-1 Antibody Epitopes from Neutralization Activity Data

Author(s)
Ferguson, Andrew L.; Falkowska, Emilia; Walker, Laura M.; Seaman, Michael S.; Burton, Dennis R.; Chakraborty, Arup K; ... Show more Show less
Thumbnail
DownloadFerguson-2013-Computational Predic.pdf (563.7Kb)
PUBLISHER_CC

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution http://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
Broadly neutralizing monoclonal antibodies effective against the majority of circulating isolates of HIV-1 have been isolated from a small number of infected individuals. Definition of the conformational epitopes on the HIV spike to which these antibodies bind is of great value in defining targets for vaccine and drug design. Drawing on techniques from compressed sensing and information theory, we developed a computational methodology to predict key residues constituting the conformational epitopes on the viral spike from cross-clade neutralization activity data. Our approach does not require the availability of structural information for either the antibody or antigen. Predictions of the conformational epitopes of ten broadly neutralizing HIV-1 antibodies are shown to be in good agreement with new and existing experimental data. Our findings suggest that our approach offers a means to accelerate epitope identification for diverse pathogenic antigens.
Date issued
2013-12
URI
http://hdl.handle.net/1721.1/86010
Department
Massachusetts Institute of Technology. Institute for Medical Engineering & Science; Massachusetts Institute of Technology. Department of Chemical Engineering; Massachusetts Institute of Technology. Department of Chemistry; Massachusetts Institute of Technology. Department of Physics; Ragon Institute of MGH, MIT and Harvard
Journal
PLoS ONE
Publisher
Public Library of Science
Citation
Ferguson, Andrew L., Emilia Falkowska, Laura M. Walker, Michael S. Seaman, Dennis R. Burton, and Arup K. Chakraborty. “Computational Prediction of Broadly Neutralizing HIV-1 Antibody Epitopes from Neutralization Activity Data.” Edited by Freddie Salsbury. PLoS ONE 8, no. 12 (December 2, 2013): e80562.
Version: Final published version
ISSN
1932-6203

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.