| dc.contributor.author | Nahmod, Andrea | |
| dc.contributor.author | Pavlović, Nataša | |
| dc.contributor.author | Staffilani, Gigliola | |
| dc.date.accessioned | 2014-04-04T18:10:03Z | |
| dc.date.available | 2014-04-04T18:10:03Z | |
| dc.date.issued | 2013-01 | |
| dc.identifier.issn | 0036-1410 | |
| dc.identifier.issn | 1095-7154 | |
| dc.identifier.uri | http://hdl.handle.net/1721.1/86028 | |
| dc.description.abstract | In this paper we show that after suitable data randomization there exists a large set of supercritical periodic initial data, in $H^{-\alpha}(\boldsymbol{T}^d)$ for some $\alpha(d) > 0$, for both two- and three-dimensional Navier--Stokes equations for which global energy bounds hold. As a consequence, we obtain almost sure large data supercritical global weak solutions. We also show that in two dimensions these global weak solutions are unique. | en_US |
| dc.description.sponsorship | National Science Foundation (U.S.) (NSF DMS 1201443) | en_US |
| dc.description.sponsorship | National Science Foundation (U.S.) (NSF DMS 1068815) | en_US |
| dc.description.sponsorship | National Science Foundation (U.S.) (NSF grant DMS 0758247) | en_US |
| dc.description.sponsorship | National Science Foundation (U.S.) (NSF grant DMS 1101192) | en_US |
| dc.description.sponsorship | Alfred P. Sloan Foundation | en_US |
| dc.language.iso | en_US | |
| dc.publisher | Society for Industrial and Applied Mathematics | en_US |
| dc.relation.isversionof | http://dx.doi.org/10.1137/120882184 | en_US |
| dc.rights | Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. | en_US |
| dc.source | Society for Industrial and Applied Mathematics | en_US |
| dc.title | Almost Sure Existence of Global Weak Solutions for Supercritical Navier--Stokes Equations | en_US |
| dc.type | Article | en_US |
| dc.identifier.citation | Nahmod, Andrea R., Nataša Pavlović, and Gigliola Staffilani. “Almost Sure Existence of Global Weak Solutions for Supercritical Navier--Stokes Equations.” SIAM J. Math. Anal. 45, no. 6 (January 2013): 3431–3452. | en_US |
| dc.contributor.department | Massachusetts Institute of Technology. Department of Mathematics | en_US |
| dc.contributor.mitauthor | Nahmod, Andrea | en_US |
| dc.relation.journal | SIAM Journal on Mathematical Analysis | en_US |
| dc.eprint.version | Final published version | en_US |
| dc.type.uri | http://purl.org/eprint/type/JournalArticle | en_US |
| eprint.status | http://purl.org/eprint/status/PeerReviewed | en_US |
| dspace.orderedauthors | Nahmod, Andrea R.; Pavlović, Nataša; Staffilani, Gigliola | en_US |
| dspace.mitauthor.error | true | |
| mit.license | PUBLISHER_POLICY | en_US |
| mit.metadata.status | Complete | |