Show simple item record

dc.contributor.authorAichholzer, Oswin
dc.contributor.authorAurenhammer, Franz
dc.contributor.authorDemaine, Erik D.
dc.contributor.authorHurtado, Ferran
dc.contributor.authorRamos, Pedro
dc.contributor.authorUrrutia, Jorge
dc.date.accessioned2014-04-07T16:49:37Z
dc.date.available2014-04-07T16:49:37Z
dc.date.issued2011-09
dc.date.submitted2010-12
dc.identifier.issn09257721
dc.identifier.urihttp://hdl.handle.net/1721.1/86056
dc.descriptionOriginal manuscript" July 21, 2010en_US
dc.description.abstractWe introduce a notion of k -convexity and explore polygons in the plane that have this property. Polygons which are k -convex can be triangulated with fast yet simple algorithms. However, recognizing them in general is a 3SUM-hard problem. We give a characterization of 2-convex polygons, a particularly interesting class, and show how to recognize them in O(n logn) time. A description of their shape is given as well, which leads to Erdős–Szekeres type results regarding subconfigurations of their vertex sets. Finally, we introduce the concept of generalized geometric permutations, and show that their number can be exponential in the number of 2-convex objects considered.en_US
dc.language.isoen_US
dc.publisherElsevieren_US
dc.relation.isversionofhttp://dx.doi.org/10.1016/j.comgeo.2011.09.001en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleOn k-convex polygonsen_US
dc.typeArticleen_US
dc.identifier.citationAichholzer, Oswin, Franz Aurenhammer, Erik D. Demaine, Ferran Hurtado, Pedro Ramos, and Jorge Urrutia. “On k-Convex Polygons.” Computational Geometry 45, no. 3 (April 2012): 73–87.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.mitauthorDemaine, Erik D.en_US
dc.relation.journalComputational Geometryen_US
dc.eprint.versionOriginal manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dspace.orderedauthorsAichholzer, Oswin; Aurenhammer, Franz; Demaine, Erik D.; Hurtado, Ferran; Ramos, Pedro; Urrutia, Jorgeen_US
dc.identifier.orcidhttps://orcid.org/0000-0003-3803-5703
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record