Show simple item record

dc.contributor.authorSong, Yale
dc.contributor.authorWen, Zhen
dc.contributor.authorLin, Ching-Yung
dc.contributor.authorDavis, Randall
dc.date.accessioned2014-04-07T17:52:52Z
dc.date.available2014-04-07T17:52:52Z
dc.date.issued2013-08
dc.identifier.isbn978-1-57735-633-2
dc.identifier.urihttp://hdl.handle.net/1721.1/86065
dc.description.abstractSequential anomaly detection is a challenging problem due to the one-class nature of the data (i.e., data is collected from only one class) and the temporal dependence in sequential data. We present One-Class Conditional Random Fields (OCCRF) for sequential anomaly detection that learn from a one-class dataset and capture the temporal dependence structure, in an unsupervised fashion. We propose a hinge loss in a regularized risk minimization framework that maximizes the margin between each sequence being classified as "normal" and "abnormal." This allows our model to accept most (but not all) of the training data as normal, yet keeps the solution space tight. Experimental results on a number of real-world datasets show our model outperforming several baselines. We also report an exploratory study on detecting abnormal organizational behavior in enterprise social networks.en_US
dc.description.sponsorshipUnited States. Defense Advanced Research Projects Agency (W911NF-12-C-0028)en_US
dc.description.sponsorshipUnited States. Office of Naval Research (N000140910625)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (IIS-1018055)en_US
dc.language.isoen_US
dc.publisherAssociation for Computing Machinery (ACM)en_US
dc.relation.isversionofhttp://dl.acm.org/citation.cfm?id=2540370en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceMIT web domainen_US
dc.titleOne-Class Conditional Random Fields for Sequential Anomaly Detectionen_US
dc.typeArticleen_US
dc.identifier.citationYale Song, Zhen Wen, Ching-Yung Lin, and Randall Davis. 2013. One-class conditional random fields for sequential anomaly detection. In Proceedings of the Twenty-Third international joint conference on Artificial Intelligence (IJCAI'13), Francesca Rossi (Ed.). AAAI Press 1685-1691.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.mitauthorSong, Yaleen_US
dc.contributor.mitauthorDavis, Randallen_US
dc.relation.journalProceedings of the Twenty-Third international joint conference on Artificial Intelligenceen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dspace.orderedauthorsSong, Yale; Wen, Zhen; Lin, Ching-Yung; Davis, Randallen_US
dc.identifier.orcidhttps://orcid.org/0000-0001-5232-7281
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record