Show simple item record

dc.contributor.authorYoshihara, Fumiki
dc.contributor.authorNakamura, Yasunobu
dc.contributor.authorYan, Fei
dc.contributor.authorGustavsson, Simon
dc.contributor.authorBylander, Jonas
dc.contributor.authorOliver, William D.
dc.contributor.authorTsai, Jaw-Shen
dc.date.accessioned2014-04-07T18:59:35Z
dc.date.available2014-04-07T18:59:35Z
dc.date.issued2014-01
dc.date.submitted2013-10
dc.identifier.issn1098-0121
dc.identifier.issn1550-235X
dc.identifier.urihttp://hdl.handle.net/1721.1/86074
dc.description.abstractWe infer the high-frequency flux noise spectrum in a superconducting flux qubit by studying the decay of Rabi oscillations under strong driving conditions. The large anharmonicity of the qubit and its strong inductive coupling to a microwave line enabled high-amplitude driving without causing significant additional decoherence. Rabi frequencies up to 1.7 GHz were achieved, approaching the qubit's level splitting of 4.8 GHz, a regime where the rotating-wave approximation breaks down as a model for the driven dynamics. The spectral density of flux noise observed in the wide frequency range decreases with increasing frequency up to 300 MHz, where the spectral density is not very far from the extrapolation of the 1/f spectrum obtained from the free-induction-decay measurements. We discuss a possible origin of the flux noise due to surface electron spins.en_US
dc.publisherAmerican Physical Societyen_US
dc.relation.isversionofhttp://dx.doi.org/10.1103/PhysRevB.89.020503en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceAmerican Physical Societyen_US
dc.titleFlux qubit noise spectroscopy using Rabi oscillations under strong driving conditionsen_US
dc.typeArticleen_US
dc.identifier.citationYoshihara, Fumiki, Yasunobu Nakamura, Fei Yan, Simon Gustavsson, Jonas Bylander, William D. Oliver, and Jaw-Shen Tsai. “Flux Qubit Noise Spectroscopy Using Rabi Oscillations Under Strong Driving Conditions.” Phys. Rev. B 89, no. 2 (January 2014). © 2014 American Physical Societyen_US
dc.contributor.departmentLincoln Laboratoryen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Nuclear Science and Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Research Laboratory of Electronicsen_US
dc.contributor.mitauthorYan, Feien_US
dc.contributor.mitauthorGustavsson, Simonen_US
dc.contributor.mitauthorBylander, Jonasen_US
dc.contributor.mitauthorOliver, William D.en_US
dc.relation.journalPhysical Review Ben_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2014-04-02T17:32:02Z
dc.language.rfc3066en
dc.rights.holderAmerican Physical Society
dspace.orderedauthorsYoshihara, Fumiki; Nakamura, Yasunobu; Yan, Fei; Gustavsson, Simon; Bylander, Jonas; Oliver, William D.; Tsai, Jaw-Shenen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-7069-1025
dc.identifier.orcidhttps://orcid.org/0000-0002-4674-2806
mit.licensePUBLISHER_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record