Show simple item record

dc.contributor.authorCheraghchi, Mahdi
dc.contributor.authorGuruswami, Venkatesan
dc.contributor.authorVelingker, Ameya
dc.date.accessioned2014-04-11T13:05:54Z
dc.date.available2014-04-11T13:05:54Z
dc.date.issued2013-10
dc.date.submitted2012-10
dc.identifier.issn0097-5397
dc.identifier.issn1095-7111
dc.identifier.urihttp://hdl.handle.net/1721.1/86093
dc.description.abstractWe prove that a random linear code over $\mathbb{F}_q$, with probability arbitrarily close to 1, is list decodable at radius $1-1/q-\epsilon$ with list size $L=O(1/\epsilon^2)$ and rate $R=\Omega_q(\epsilon^2/(\log^3(1/\epsilon)))$. Up to the polylogarithmic factor in $1/\epsilon$ and constant factors depending on $q$, this matches the lower bound $L=\Omega_q(1/\epsilon^2)$ for the list size and upper bound $R=O_q(\epsilon^2)$ for the rate. Previously only existence (and not abundance) of such codes was known for the special case $q=2$ (Guruswami et al., 2002). In order to obtain our result, we employ a relaxed version of the well-known Johnson bound on list decoding that translates the average Hamming distance between codewords to list decoding guarantees. We furthermore prove that the desired average-distance guarantees hold for a code provided that a natural complex matrix encoding the codewords satisfies the restricted isometry property with respect to the Euclidean norm. For the case of random binary linear codes, this matrix coincides with a random submatrix of the Hadamard--Walsh transform matrix that is well studied in the compressed sensing literature. Finally, we improve the analysis of Rudelson and Vershynin (2008) on the number of random frequency samples required for exact reconstruction of $k$-sparse signals of length $N$. Specifically, we improve the number of samples from $O(k \log(N) \log^2(k) (\log k + \log\log N))$ to $O(k \log(N) \cdot \log^3(k))$. The proof involves bounding the expected supremum of a related Gaussian process by using an improved analysis of the metric defined by the process. This improvement is crucial for our application in list decoding.en_US
dc.language.isoen_US
dc.publisherSociety for Industrial and Applied Mathematicsen_US
dc.relation.isversionofhttp://dx.doi.org/10.1137/120896773en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceSociety for Industrial and Applied Mathematicsen_US
dc.titleRestricted Isometry of Fourier Matrices and List Decodability of Random Linear Codesen_US
dc.typeArticleen_US
dc.identifier.citationCheraghchi, Mahdi, Venkatesan Guruswami, and Ameya Velingker. “Restricted Isometry of Fourier Matrices and List Decodability of Random Linear Codes.” SIAM Journal on Computing 42, no. 5 (October 2013): 1888–1914. © 2013, Society for Industrial and Applied Mathematicsen_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.contributor.mitauthorCheraghchi, Mahdien_US
dc.relation.journalSIAM Journal on Computingen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsCheraghchi, Mahdi; Guruswami, Venkatesan; Velingker, Ameyaen_US
mit.licensePUBLISHER_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record