Show simple item record

dc.contributor.authorKharche, Neerav
dc.contributor.authorKlimeck, Gerhard
dc.contributor.authorKim, Dae-Hyun
dc.contributor.authorLuisier, Mathieu
dc.contributor.authordel Alamo, Jesus A.
dc.date.accessioned2014-04-11T13:22:46Z
dc.date.available2014-04-11T13:22:46Z
dc.date.issued2011-05
dc.date.submitted2011-03
dc.identifier.issn0018-9383
dc.identifier.issn1557-9646
dc.identifier.urihttp://hdl.handle.net/1721.1/86094
dc.description.abstractA simulation methodology for ultra-scaled InAs quantum well field-effect transistors (QWFETs) is presented and used to provide design guidelines and a path to improve device performance. A multiscale modeling approach is adopted, where strain is computed in an atomistic valence-force-field method, an atomistic sp[superscript 3]d[superscript 5]s* tight-binding model is used to compute channel effective masses, and a 2-D real-space effective mass-based ballistic quantum transport model is employed to simulate three-terminal current-voltage characteristics including gate leakage. The simulation methodology is first benchmarked against experimental I-V data obtained from devices with gate lengths ranging from 30 to 50 nm. A good quantitative match is obtained. The calibrated simulation methodology is subsequently applied to optimize the design of a 20 nm gate length device. Two critical parameters have been identified to control the gate leakage current of the QWFETs, i) the geometry of the gate contact (curved or square) and ii) the Schottky barrier height at the gate metal contact. In addition to pushing the threshold voltage toward an enhancement mode operation, a higher Schottky barrier at gate metal contact can help suppress the gate leakage and enable aggressive insulator scaling.en_US
dc.description.sponsorshipSemiconductor Research Corporationen_US
dc.description.sponsorshipMicroelectronics Advanced Research Corporation (MARCO) (Focus Center on Materials, Structures, and Devices)en_US
dc.description.sponsorshipNational Science Foundation (U.S.)en_US
dc.language.isoen_US
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1109/ted.2011.2144986en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleMultiscale Metrology and Optimization of Ultra-Scaled InAs Quantum Well FETsen_US
dc.typeArticleen_US
dc.identifier.citationKharche, Neerav, Gerhard Klimeck, Dae-Hyun Kim, Jesus A. del Alamo, and Mathieu Luisier. “Multiscale Metrology and Optimization of Ultra-Scaled InAs Quantum Well FETs.” IEEE Transactions on Electron Devices 58, no. 7 (n.d.): 1963–1971.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Microsystems Technology Laboratoriesen_US
dc.contributor.mitauthordel Alamo, Jesus A.en_US
dc.relation.journalIEEE Transactions on Electron Devicesen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsKharche, Neerav; Klimeck, Gerhard; Kim, Dae-Hyun; del Alamo, Jesus A.; Luisier, Mathieuen_US
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record