Show simple item record

dc.contributor.authorCai, Yang
dc.contributor.authorDaskalakis, Konstantinos
dc.date.accessioned2014-04-11T14:27:48Z
dc.date.available2014-04-11T14:27:48Z
dc.date.issued2011-10
dc.identifier.isbn978-0-7695-4571-4
dc.identifier.isbn978-1-4577-1843-4
dc.identifier.urihttp://hdl.handle.net/1721.1/86100
dc.descriptionOriginal manuscript: June 2, 2011en_US
dc.description.abstractWe provide a Polynomial Time Approximation Scheme for the multi-dimensional unit-demand pricing problem, when the buyer's values are independent (but not necessarily identically distributed.) For all ϵ >; 0, we obtain a (1 + ϵ)-factor approximation to the optimal revenue in time polynomial, when the values are sampled from Monotone Hazard Rate (MHR) distributions, quasi-polynomial, when sampled from regular distributions, and polynomial in n[superscript poly(log r)] when sampled from general distributions supported on a set [u[subscript min],ru[subscript min]]. We also provide an additive PTAS for all bounded distributions. Our algorithms are based on novel extreme value theorems for MHR and regular distributions, and apply probabilistic techniques to understand the statistical properties of revenue distributions, as well as to reduce the size of the search space of the algorithm. As a byproduct of our techniques, we establish structural properties of optimal solutions. We show that, for all ϵ >; 0, g(1/ϵ) distinct prices suffice to obtain a (1 + ϵ)-factor approximation to the optimal revenue for MHR distributions, where g(1/ϵ) is a quasi-linear function of 1/ϵ that does not depend on the number of items. Similarly, for all ϵ >; 0 and n >; 0, g(1/ϵ · log n) distinct prices suffice for regular distributions, where n is the number of items and g(·) is a polynomial function. Finally, in the i.i.d. MHR case, we show that, as long as the number of items is a sufficiently large function of 1/ϵ, a single price suffices to achieve a (1 + ϵ)-factor approximation. Our results represent significant progress to the single-bidder case of the multidimensional optimal mechanism design problem, following Myerson's celebrated work on optimal mechanism design [Myerson 1981].en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Award CCF-0953960)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Award CCF-1101491)en_US
dc.description.sponsorshipAlfred P. Sloan Foundation (Fellowship)en_US
dc.language.isoen_US
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1109/focs.2011.76en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleExtreme-Value Theorems for Optimal Multidimensional Pricingen_US
dc.typeArticleen_US
dc.identifier.citationCai, Yang, and Constantinos Daskalakis. “Extreme-Value Theorems for Optimal Multidimensional Pricing.” 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science (n.d.).en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.mitauthorCai, Yangen_US
dc.contributor.mitauthorDaskalakis, Konstantinosen_US
dc.relation.journalProceedings of the 2011 IEEE 52nd Annual Symposium on Foundations of Computer Scienceen_US
dc.eprint.versionOriginal manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dspace.orderedauthorsCai, Yang; Daskalakis, Constantinosen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-5451-0490
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record